ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Заданы две непересекающиеся окружности с центрами O1 и O2 и их общая внешняя касательная, касающаяся окружностей соответственно в точках A1 и A2. Пусть B1 и B2 – точки пересечения отрезка O1O2 с соответствующими окружностями, а C – точка пересечения прямых A1B1 и A2B2. Докажите, что прямая, проведённая через точку C перпендикулярно B1B2, делит отрезок A1A2 пополам.

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 152]      



Задача 53739

Темы:   [ Трапеции (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Каждая из боковых сторон AB и CD трапеции ABCD разделена на пять равных частей. Пусть M и N – вторые точки деления на боковых сторонах, считая от вершин B и C соответственно. Найдите MN, если основания  AD = a  и  BC = b.

Прислать комментарий     Решение

Задача 54844

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки подобия ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведена биссектриса CD прямого угла ACB; DM и DN являются соответственно высотами треугольников ADC и BDC.
Найдите AC, если известно, что  AM = 4,  BN = 9.

Прислать комментарий     Решение

Задача 55390

Темы:   [ Угол между касательной и хордой ]
[ Пересекающиеся окружности ]
[ Признаки подобия ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках A и B. Из точки A к этим окружностям проведены касательные AM и AN(M и N – точки окружностей). Докажите, что
  а)  ∠ABN + ∠MAN = 180°;
  б)  BM/BN = (AM/AN)2.

Прислать комментарий     Решение

Задача 65551

Темы:   [ Пересекающиеся окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки подобия ]
Сложность: 3+
Классы: 9,10,11

Три окружности проходят через точку X. A, B, C – точки их пересечения, отличные от X. A' – вторая точка пересечения прямой AX и описанной окружности треугольника BCX. Точки B' и C' определяются аналогично. Докажите, что треугольники ABC', AB'C и A'BC подобны.

Прислать комментарий     Решение

Задача 108073

Темы:   [ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
[ Признаки подобия ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Заданы две непересекающиеся окружности с центрами O1 и O2 и их общая внешняя касательная, касающаяся окружностей соответственно в точках A1 и A2. Пусть B1 и B2 – точки пересечения отрезка O1O2 с соответствующими окружностями, а C – точка пересечения прямых A1B1 и A2B2. Докажите, что прямая, проведённая через точку C перпендикулярно B1B2, делит отрезок A1A2 пополам.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 152]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .