ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Пусть I – точка пересечения биссектрис треугольника ABC .
Обозначим через A' , B' , C' точки, симметричные точке I
относительно сторон треугольника ABC . Докажите, что если
окружность, описанная около треугольника A'B'C' , проходит
через вершину B , то |
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 375]
B основании четырёхугольной пирамиды SABCD лежит четырёхугольник ABCD, диагонали которого перпендикулярны и пересекаются в точке P, и SP является высотой пирамиды. Докажите, что проекции точки P на боковые грани пирамиды лежат на одной окружности.
Треугольник ABC (AB > BC) вписан в окружность Ω. На сторонах AB и BC выбраны точки M и N соответственно так, что AM = CN. Прямые MN и AC пересекаются в точке K. Пусть P – центр вписанной окружности треугольника AMK, а Q – центр вневписанной окружности треугольника CNK, касающейся стороны CN. Докажите, что середина дуги ABC окружности Ω равноудалена от точек P и Q.
На сторонах AB, AC треугольника ABC взяли такие точки C1, B1 соответственно, что BB1 ⊥ CC1. Точка X внутри треугольника такова, что
Дан треугольник ABC. На прямых AB, BC и CA взяты точки C1, A1, и B1 соответственно, отличные от вершин треугольника. Докажите, что окружности, описанные около треугольников AB1C1, A1B1C, A1BC1, пересекаются в одной точке.
Восстановите вписанно-описанный четырёхугольник $ABCD$ по серединам дуг $AB$, $BC$, $CD$ его описанной окружности.
Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 375]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке