ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Сонкин М.

Окружности S1 и S2 с центрами O1 и O2 пересекаются в точках A и B . Окружность, проходящая через точки O1 , O2 и A , вторично пересекает окружность S1 в точке D , окружность S2 – в точке E , а прямую AB – в точке C . Докажите, что CD=CB=CE .

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 563]      



Задача 103959

Темы:   [ Симметрия помогает решить задачу ]
[ Ломаные внутри квадрата ]
Сложность: 4
Классы: 7,8,9

Дан квадрат со стороной 1, внутренние стенки которого зеркальны. Из вершины квадрата был пущен луч света, который 1000 раз отразился от стенок, после чего попал в (возможно, другую) вершину квадрата. Какой минимальный путь мог при этом пройти луч света?
Прислать комментарий     Решение


Задача 104095

Темы:   [ Симметрия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10

В окружности с центром O проведены три равные хорды AB, CD и PQ (см. рисунок). Докажите, что MOK равен половине угла BLD.

Прислать комментарий     Решение

Задача 105177

Темы:   [ Свойства симметрий и осей симметрии ]
[ Разбиения на пары и группы; биекции ]
[ Инварианты ]
[ Произвольные многоугольники ]
Сложность: 4
Классы: 8,9,10,11

Бильярдный стол имеет форму многоугольника (не обязательно выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины этого многоугольника – лузы, при попадании в которые шар там и остаётся. Из вершины A с (внутренним) углом 90° выпущен шар, который отражается от бортов (сторон многоугольника) по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.

Прислать комментарий     Решение

Задача 108190

Темы:   [ Симметрия помогает решить задачу ]
[ Пересекающиеся окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

Окружности S1 и S2 с центрами O1 и O2 пересекаются в точках A и B . Окружность, проходящая через точки O1 , O2 и A , вторично пересекает окружность S1 в точке D , окружность S2 – в точке E , а прямую AB – в точке C . Докажите, что CD=CB=CE .
Прислать комментарий     Решение


Задача 108662

Темы:   [ Симметрия помогает решить задачу ]
[ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Угол при вершине B треугольника ABC равен 60o ; AA1 и CC1 – высоты треугольника. На прямой, проходящей через вершину B перпендикулярно A1C1 , выбрана точка M , отличная B , причём AMC=60o . Докажите, что AMB=30o .
Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .