ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что любая прямая, не параллельная оси ординат, имеет уравнение вида y = kx + l. Число k называется угловым коэффициентом прямой. Угловой коэффициент прямой с точностью до знака равен тангенсу острого угла, который образует прямая с осью x. Решение |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 354]
Можно ли нарисовать на плоскости четыре красных и четыре чёрных точки так, чтобы для каждой тройки точек одного цвета нашлась такая точка другого цвета, что эти четыре точки являются вершинами параллелограмма?
Докажите, что любая прямая, не параллельная оси ординат, имеет уравнение вида y = kx + l. Число k называется угловым коэффициентом прямой. Угловой коэффициент прямой с точностью до знака равен тангенсу острого угла, который образует прямая с осью x.
Даны точки A(-6, 1) и B(4, 6). Найдите координаты точки C, делящей отрезок AB в отношении 2 : 3, считая от точки A.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 354] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|