ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сумма десяти натуральных чисел равна 1001. Какое наибольшее значение может принимать НОД (наибольший общий делитель) этих чисел? Верно ли, что если b > a + c > 0, то квадратное уравнение ax² + bx + c = 0 имеет два корня? Докажите, что уравнение прямой на комплексной плоскости всегда может быть записано в виде Bz – B z + C = 0, где C – чисто мнимое число.
Радиус окружности равен 10, данная точка удалена от центра на расстояние, равное 15. Найдите её наименьшее и наибольшее расстояния от точек окружности.
Докажите, что каждая сторона четырёхугольника меньше суммы трех других его сторон.
Решить систему уравнений: В четырёхугольнике ABCD длины сторон AB и BC равны 1, ∠B = 100°, ∠D = 130°. Найдите BD. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 289]
На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону построен квадрат ABDE. Известно, что AC = 1, BC = 3.
В четырёхугольнике ABCD длины сторон AB и BC равны 1, ∠B = 100°, ∠D = 130°. Найдите BD.
AL – биссектриса треугольника ABC , K – точка на стороне AC , причём CK=CL . Прямая LK и биссектриса угла B пересекаются в точке P . Докажите, что AP=PL .
AH – высота остроугольного треугольника ABC , K и L – основания перпендикуляров, опущенных из точки H на стороны AB и AC . Докажите, что точки B , K , L и C лежат на одной окружности.
На сторонах AB и BC треугольника ABC выбраны точки
K и N соответственно. M – середина стороны AC .
Известно, что
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 289]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке