ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Частные случаи треугольников
>>
Прямоугольные треугольники
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В остроугольном треугольнике ABC проведены высоты BD и AE , пересекающиеся в точке P . Докажите, что AB2 = AP· AE + BP· BD . Решение |
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 1354]
Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.
Внутри параллелограмма ABCD выбрана точка K так, что середина стороны AD равноудалена от точек K и C, а середина стороны CD равноудалена от точек K и A. Точка N – середина отрезка BK. Докажите, что углы NAK и NCK равны.
В треугольнике ABC (AB > BC) K и M – середины сторон AB и AC, O – точка пересечения биссектрис. Пусть P – точка пересечения прямых KM и CO, а точка Q такова, что QP ⊥ KM и QM || BO. Докажите, что QO ⊥ AC.
На диагонали BD прямоугольной трапеции ABCD (∠D = 90°, BC || AD) взята точка Q так, что BQ : QD = 1 : 3. Окружность с центром в точке Q касается прямой AD и пересекает прямую BC в точках P и M. Найдите длину стороны AB, если BC = 9, AD = 8, PM = 4.
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 1354] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|