ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 1354]      



Задача 64754

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Доказательство от противного ]
Сложность: 4

Внутри равнобедренного прямоугольного треугольника ABC с гипотенузой AB взята такая точка M, что угол MAB на 15° больше угла MAC, а угол MCB на 15° больше угла MBC. Найдите угол BMC.

Прислать комментарий     Решение

Задача 64880

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Построения одной линейкой ]
Сложность: 4
Классы: 10,11

Дан прямоугольный треугольник с гипотенузой AC, проведена биссектриса треугольника BD; отмечены середины E и F дуг BD окружностей, описанных около треугольников ADB и CDB соответственно (сами окружности не проведены). Постройте одной линейкой центры окружностей.

Прислать комментарий     Решение

Задача 66223

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
[ ГМТ - прямая или отрезок ]
[ Изогональное сопряжение ]
Сложность: 4
Классы: 9,10,11

Даны прямоугольный треугольник ABC и две взаимно перпендикулярные прямые x и y, проходящие через вершину прямого угла A. Для точки X, движущейся по прямой x, определим yb как образ прямой y при симметрии относительно XB, а yc – как образ прямой y при симметрии относительно XC. Пусть yb и yс пересекаются в точке Y. Найдите геометрическое место точек Y (для несовпадающих yb и yс).

Прислать комментарий     Решение

Задача 102694

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

В квадрате ABCD точка M лежит на стороне BC, а точка N — на стороне AB. Прямые AM и DN пересекаются в точке O.Найдите площадь квадрата, если известно, что DN = 4, AM = 3, а косинус угла DOA равен q.

Прислать комментарий     Решение


Задача 102695

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

В квадрате PQRS точка B лежит на стороне RS, а точка A — на стороне SP. Отрезки QB и RA пересекаются в точке T, причём косинус угла BTR равен -0, 2. Найдите сторону квадрата, если известно, что RA = 10, а QB = a.

Прислать комментарий     Решение


Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 1354]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .