Версия для печати
Убрать все задачи
Точка
P движется по описанной окружности
треугольника
ABC. Докажите, что при этом прямая Симсона точки
P
относительно треугольника
ABC поворачивается на угол, равный половине
угловой величины дуги, пройденной точкой
P.

Решение
На прямых $BC$, $CA$, $AB$ взяты точки $A_1$ и $A_2$, $B_1$ и $B_2$,
$C_1$ и $C_2$ так, что $A_1B_2\| AB$, $B_1C_2\| BC$, $C_1A_2\| CA$. Пусть
$\ell_a$ — прямая, соединяющая точки пересечения прямых $BB_1$ и $CC_2$,
$BB_2$ и $CC_1$; прямые $\ell_b$ и $\ell_c$ определяются аналогично. Докажите, что
прямые $\ell_a$, $\ell_b$ и $\ell_c$ пересекаются в одной точке (или параллельны).


Решение
Сторона основания правильной четырёхугольной пирамиды равна
a .
Боковая грань образует с плоскостью основания угол
45
o .
Найдите высоту пирамиды.

Решение