Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что при всех натуральных n выполняется сравнение [(1 + $ \sqrt{2}$)n] $ \equiv$ n(mod 2).

Вниз   Решение


а) Из произвольной точки M внутри правильного n-угольника проведены перпендикуляры  MK1, MK2, ..., MKn  к его сторонам (или их продолжениям). Докажите, что      (O – центр n-угольника).

б) Докажите, что сумма векторов, проведённых из любой точки M внутри правильного тетраэдра перпендикулярно к его граням, равна     где O – центр тетраэдра.

ВверхВниз   Решение


В пространстве имеются 30 ненулевых векторов. Доказать, что среди них найдутся два, угол между которыми меньше 45°.

ВверхВниз   Решение


Автор: Борисов Л.

Мудрецу С. сообщили сумму трёх натуральных чисел, а мудрецу П. – их произведение.
– Если бы я знал, – сказал С., – что твоё число больше, чем моё, я бы сразу назвал три искомых числа.
– Мое число меньше, чем твоё, – ответил П., – а искомые числа ..., ... и ... .
Какие числа назвал П.?

ВверхВниз   Решение


Автор: Анджанс А.

  Дан выпуклый четырёхугольник ABCD. Каждая его сторона разбита на k равных частей. Точки деления, принадлежащие стороне AB, соединены прямыми с точками деления, принадлежащими стороне CD, так что первая, считая от A, точка деления соединена с первой точкой деления, считая от D, вторая, считая от A, – со второй, считая от D, и т. д. (первая серия прямых), а точки деления, принадлежащие стороне BC, аналогичным образом соединены с точками деления, принадлежащими стороне DA (вторая серия прямых). Образовалось k² маленьких четырёхугольников. Из них выбрано k четырёхугольников таким образом, что каждые два выбранных четырёхугольника разделены хотя бы одной прямой первой серии и хотя бы одной прямой второй серии.
  Доказать, что сумма площадей выбранных четырёхугольников равна  1/k SABCD.

ВверхВниз   Решение


Автор: Ботин Д.А.

Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?

ВверхВниз   Решение


Автор: Садыков Р.

Дан прямоугольник ABCD. Через точку B провели две перпендикулярные прямые. Первая прямая пересекает сторону AD в точке K, а вторая   продолжение стороны CD в точке L. Пусть F – точка пересечения KL и AC. Докажите, что  BFKL.

ВверхВниз   Решение


На продолжении наибольшей стороны AC треугольника ABC отложен отрезок |CD|=|BC| . Доказать, что ABD тупой.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 32116

Темы:   [ Неравенства с углами ]
[ Против большей стороны лежит больший угол ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Классические неравенства (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Пусть a, b, c – длины сторон треугольника; α, β, γ – величины противолежащих углов. Докажите, что    aα + bβ + cγ ≥ aβ + bγ + cα.

Прислать комментарий     Решение


Задача 55240

Темы:   [ Неравенства с углами ]
[ Вспомогательные подобные треугольники ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 4+
Классы: 8,9

На плоскости даны прямая l и две точки P и Q, лежащие по одну сторону от неё. Найдите на прямой l такую точку M, для которой расстояние между основаниями высот треугольника PQM, опущенных на стороны PM и QM, наименьшее.

Прислать комментарий     Решение

Задача 35721

Темы:   [ Вспомогательная окружность ]
[ Неравенства с углами ]
[ Вписанный угол, опирающийся на диаметр ]
[ Диаметр, основные свойства ]
[ Четырехугольник (неравенства) ]
Сложность: 3+
Классы: 8,9

Докажите, что если в четырехугольнике два противоположные угла тупые, то диагональ, соединяющая вершины этих углов, меньше другой диагонали.
Прислать комментарий     Решение


Задача 79238

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Неравенства с углами ]
Сложность: 3+
Классы: 9

Пусть на плоскости есть пять точек общего положения, то есть никакие три из них не лежат на одной прямой и никакие четыре — на одной окружности. Докажите, что среди этих точек есть две такие, что они лежат по разные стороны от окружности, проходящей через оставшиеся три точки.
Прислать комментарий     Решение


Задача 109039

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенства с углами ]
Сложность: 3+
Классы: 7,8,9

На продолжении наибольшей стороны AC треугольника ABC отложен отрезок |CD|=|BC| . Доказать, что ABD тупой.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .