ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В пирамиде ABCD точки M, F и K – середины рёбер BC, AD и CD соответственно. На прямых AM и CF взяты соответственно точки P и Q, причём
PQ || BK.  Найдите отношение  PQ : BK.

   Решение

Задачи

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 512]      



Задача 109080

Темы:   [ Параллельность прямых и плоскостей ]
[ Вспомогательные подобные треугольники ]
[ Тетраэдр (прочее) ]
Сложность: 4-
Классы: 10,11

В пирамиде ABCD точки M, F и K – середины рёбер BC, AD и CD соответственно. На прямых AM и CF взяты соответственно точки P и Q, причём
PQ || BK.  Найдите отношение  PQ : BK.

Прислать комментарий     Решение

Задача 109609

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Теорема Паскаля ]
[ Симметрия помогает решить задачу ]
[ Хорды и секущие (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Гордон В.

Хорда CD окружности с центром O перпендикулярна ее диаметру AB, а хорда AE делит пополам радиус OC.
Докажите, что хорда DE делит пополам хорду BC.

Прислать комментарий     Решение

Задача 111049

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Неравенство треугольника (прочее) ]
[ Трапеции (прочее) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9

На основании BC трапеции ABCD взята точка E, лежащая на одной окружности с точками A, C и D. Другая окружность, проходящая через точки A, B и C, касается прямой CD. Найдите BC, если  AB = 12  и  BE : EC = 4 : 5.  Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.

Прислать комментарий     Решение

Задача 111050

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Неравенство треугольника (прочее) ]
[ Трапеции (прочее) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9

Трапеция ABCD вписана в окружность. Другая окружность, проходящая через точки A и C, касается прямой CD и пересекает в точке E продолжение основания  BC = 7  за точку B. Найдите BE, если  AE = 12.  Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.

Прислать комментарий     Решение

Задача 111619

Темы:   [ Гомотетия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9

Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а сторону BC – в точке M. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.

Прислать комментарий     Решение

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .