Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Даны натуральные числа x1, ..., xn. Докажите, что число      можно представить в виде суммы квадратов двух целых чисел.

Вниз   Решение


Три натуральных числа таковы, что последняя цифра суммы любых двух из них является последней цифрой третьего числа. Произведение этих трёх чисел записали на доске, а затем всё, кроме трёх последних цифр этого произведения, стёрли. Какие три цифры могли остаться на доске?

ВверхВниз   Решение


Дано 12 целых чисел. Докажите, что из них можно выбрать два, разность которых делится на 11.

ВверхВниз   Решение


В каждую клетку квадрата 1000×1000 вписано число так, что в любом не выходящем за пределы квадрата прямоугольнике площади s со сторонами, проходящими по границам клеток, сумма чисел одна и та же. При каких s числа во всех клетках обязательно будут одинаковы?

ВверхВниз   Решение


Найдите объём прямой призмы, основанием которой служит прямоугольный треугольник с острым углом α , если боковое ребро призмы равно l и образует с диагональю большей боковой грани угол β .

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 109233

Темы:   [ Прямая призма ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Основанием прямой призмы служит ромб с острым углом α . Найдите объём призмы, если её большая диагональ равна l и образует с плоскостью основания угол β .
Прислать комментарий     Решение


Задача 109234

Темы:   [ Прямая призма ]
[ Площадь сечения ]
[ Объем призмы ]
Сложность: 3
Классы: 10,11

В основании прямой призмы лежит равносторонний треугольник. Плоскость, проходящая через одну из сторон нижнего основания и противоположную вершину верхнего, наклонена к плоскости нижнего основания под углом ϕ . Площадь этого сечения равна Q . Найдите объём призмы.
Прислать комментарий     Решение


Задача 109235

Темы:   [ Прямая призма ]
[ Объем призмы ]
Сложность: 3
Классы: 10,11

Основанием прямой призмы служит равнобедренная трапеция с острым углом α . Боковая сторона трапеции и её меньшее основание равны. Найдите объём призмы, если диагональ призмы равна a и образует с плоскостью основания угол β .
Прислать комментарий     Решение


Задача 109236

Темы:   [ Прямая призма ]
[ Объем призмы ]
Сложность: 3
Классы: 10,11

Найдите объём прямой призмы, основанием которой служит прямоугольный треугольник с острым углом α , если боковое ребро призмы равно l и образует с диагональю большей боковой грани угол β .
Прислать комментарий     Решение


Задача 66272

Темы:   [ Прямая призма ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Существует ли выпуклый многогранник, у которого рёбер столько же, сколько диагоналей? (Диагональю многогранника называется отрезок, соединяющий две вершины, не лежащие в одной грани.)

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .