ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если около параллелепипеда можно описать сферу, то этот параллелепипед ─ прямоугольный.

   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 348]      



Задача 98198

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 6,7,8

Автор: Фольклор

Петя хочет изготовить необычную игральную кость, которая, как обычно, должна иметь форму куба, на гранях которого нарисованы точки (на разных гранях разное число точек), но при этом на каждых двух соседних гранях число точек должно различаться по крайней мере на два (при этом разрешается, чтобы на некоторых гранях оказалось больше шести точек). Сколько всего точек необходимо для этого нарисовать?

Прислать комментарий     Решение

Задача 109084

Темы:   [ Свойства сечений ]
[ Параллелепипеды (прочее) ]
Сложность: 3
Классы: 10,11

Дан параллелепипед ABCDA1B1C1D1 . На рёбрах AD , A1D1 и B1C1 взяты точки M , L и K соответственно, причём B1K = A1L , AM = A1L . Известно, что KL = 2 . Найдите длину отрезка, по которому плоскость KLM пересекает параллелограмм ABCD .
Прислать комментарий     Решение


Задача 109290

Темы:   [ Правильная пирамида ]
[ Куб ]
Сложность: 3
Классы: 10,11

Найдите ребро куба, одна грань которого лежит в плоскости основания правильной треугольной пирамиды, а четыре оставшиеся вершины – на её боковой поверхности, если стороны основания пирамиды равны a , а высота пирамиды равна h .
Прислать комментарий     Решение


Задача 109321

Темы:   [ Сфера, описанная около призмы ]
[ Прямоугольные параллелепипеды ]
Сложность: 3
Классы: 10,11

Докажите, что если около параллелепипеда можно описать сферу, то этот параллелепипед ─ прямоугольный.
Прислать комментарий     Решение


Задача 109344

Темы:   [ Параллельное проектирование ]
[ Параллелепипеды ]
Сложность: 3
Классы: 10,11

В параллелепипеде ABCDA1B1C1D1 проведён отрезок, соединяющий вершину A с серединой ребра CC1 . В каком отношении этот отрезок делится плоскостью BDA1 ?
Прислать комментарий     Решение


Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 348]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .