ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сторона основания правильной четырёхугольной пирамиды равна a, боковое ребро равно b. Найдите радиус шара, касающегося плоскости основания и боковых рёбер пирамиды.

   Решение

Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 538]      



Задача 109334

Темы:   [ Правильная пирамида ]
[ Сфера, касающаяся ребер или сторон пирамиды ]
Сложность: 3
Классы: 10,11

Сторона основания правильной треугольной пирамиды равна a, боковое ребро равно b. Найдите радиус шара, касающегося плоскости основания и боковых рёбер пирамиды.
Прислать комментарий     Решение


Задача 109335

Темы:   [ Правильная пирамида ]
[ Сфера, касающаяся ребер или сторон пирамиды ]
Сложность: 3
Классы: 10,11

Сторона основания правильной четырёхугольной пирамиды равна a, боковое ребро равно b. Найдите радиус шара, касающегося плоскости основания и боковых рёбер пирамиды.
Прислать комментарий     Решение


Задача 109336

Темы:   [ Правильная пирамида ]
[ Сфера, касающаяся ребер или сторон пирамиды ]
Сложность: 3
Классы: 10,11

Сторона основания правильной шестиугольной пирамиды равна a, боковое ребро равно b. Найдите радиус шара, касающегося плоскости основания и боковых рёбер пирамиды.
Прислать комментарий     Решение


Задача 109357

Темы:   [ Ортогональная проекция (прочее) ]
[ Четырехугольная пирамида ]
Сложность: 3
Классы: 10,11

Основание четырёхугольной пирамиды PABCD – параллелограмм ABCD , M – основание перпендикуляра, опущенного из точки A на BD . Известно, что BP = DP . Докажите, что расстояние от точки M до середины ребра AP равно половине ребра CP .
Прислать комментарий     Решение


Задача 109381

Темы:   [ Правильная пирамида ]
[ Сфера, описанная около пирамиды ]
Сложность: 3
Классы: 10,11

Найдите объём правильной треугольной пирамиды со стороной основания a и радиусом R описанной сферы.
Прислать комментарий     Решение


Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 538]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .