ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из натурального числа вычли сумму его цифр и получили 2007. Каким могло быть исходное число?

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 598]      



Задача 109462

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7,8,9

Из натурального числа вычли сумму его цифр и получили 2007. Каким могло быть исходное число?
Прислать комментарий     Решение


Задача 30612

Темы:   [ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
Сложность: 3-
Классы: 7,8

Сформулируйте и докажите признаки делимости на 2n и 5n.

Прислать комментарий     Решение

Задача 30613

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 2 и 4 ]
Сложность: 3-
Классы: 7,8

Последняя цифра квадрата натурального числа равна 6. Докажите, что его предпоследняя цифра нечётна.

Прислать комментарий     Решение

Задача 30620

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3-
Классы: 7,8

Докажите, что если записать в обратном порядке цифры любого натурального числа, то разность исходного и нового числа будет делиться на 9.

Прислать комментарий     Решение

Задача 30623

Темы:   [ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
Сложность: 3-
Классы: 7,8

Найдите наименьшее натуральное число, делящееся на 36, в записи которого встречаются все 10 цифр.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .