ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Выпуклая фигура F обладает следующим свойством: любой правильный треугольник со стороной 1 можно параллельно перенести так, что все его вершины попадут на границу F. Обязательно ли F – круг? Решение |
Страница: << 1 2 3 4 >> [Всего задач: 19]
Выпуклой фигурой F нельзя накрыть полукруг радиуса R. Может ли случиться, что двумя фигурами, равными F, можно накрыть круг радиуса R?
Арена цирка освещается n различными прожекторами. Каждый прожектор освещает выпуклую фигуру. Известно, что если выключить любой прожектор, то арена будет по-прежнему полностью освещена, а если выключить любые два прожектора, то арена будет освещена не полностью. При каких n это возможно?
Выпуклая фигура F обладает следующим свойством: любой правильный треугольник со стороной 1 можно параллельно перенести так, что все его вершины попадут на границу F. Обязательно ли F – круг?
Арена цирка освещается n различными прожекторами. Каждый прожектор освещает некоторую выпуклую фигуру. Известно, что если выключить один произвольный прожектор, то арена будет по-прежнему полностью освещена, а если выключить произвольные два прожектора, то арена полностью освещена не будет. При каких значениях n это возможно?
а) Несколько чёрных квадратов со стороной 1 см прибиты к белой плоскости одним гвоздём толщины 0,1 см (гвоздь не задевает границ квадратов). Образовалась многоугольная чёрная фигура. Может ли периметр этой фигуры быть больше 1 км? б) Та же задача, но гвоздь имеет толщину 0 (то есть "пробивает" квадрат в точке). в) Несколько чёрных квадратов со стороной 1 лежат на белой плоскости, образуя многоугольную чёрную фигуру (возможно, состоящую из нескольких кусков и имеющую дырки). Может ли отношение периметра этой фигуры к её площади быть больше 100000?
Страница: << 1 2 3 4 >> [Всего задач: 19] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|