ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Натуральные числа от 1 до 1000 по одному выписали на карточки, а затем накрыли этими карточками какие-то 1000 клеток прямоугольника 1x 1994 . Если соседняя справа от карточки с числом n клетка свободна, то за один ход ее разрешается накрыть карточкой с числом n+1 . Докажите, что нельзя сделать более полумиллиона таких ходов. Решение |
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 328]
Пусть fk,l(x) – производящая функция последовательности Pk,l(n) из задачи 61525: fk,l(x) = Pk,l(0) + xPk,l(1) + ... + xklPk,l(kl). а) Докажите равенства: fk,l(x) = fk–1,l(x) + xkfk,l–1(x) = fk,l–1(x) + xlfk–1,l(x). б) Докажите, что функции fk,l(x) совпадают с многочленами Гаусса gk,l(x) (определение многочленов Гаусса смотри здесь).
Даны 10 чисел – одна единица и 9 нулей. Разрешается выбирать два числа и заменять каждое из них их средним арифметическим.
По кругу расставлено 300 положительных чисел. Могло ли случиться так, что каждое из этих чисел, кроме одного, равно разности своих соседей?
В однокруговом турнире участвовали 15 команд.
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 328] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|