ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи При повороте треугольника KLM на угол 120° вокруг точки Q, лежащей на стороне KL, вершина M переходит в вершину K, а вершина L – в точку N, лежащую на продолжении стороны LM за точку M. Найдите отношение площадей треугольников KLM и LNQ. Существует ли треугольник с вершинами в узлах сетки, у которого центры вписанной и описанной окружностей, точки пересечения высот и медиан также лежат в узлах сетки? Есть тысяча билетов с номерами 000, 001, ..., 999 и сто ящиков с номерами 00, 01, ..., 99. Билет разрешается опустить в ящик, если номер ящика может быть получен из номера билета вычеркиванием одной из цифр. Можно ли разложить все билеты в 50 ящиков? Найдите значение выражения Внутри прямоугольного треугольника АВС выбрана произвольная точка Р, из которой опущены перпендикуляры PK и РМ на катеты АС и ВС соответственно. Прямые АР и ВР пересекают катеты в точках A' и B' соответственно. Известно, что SAPB' : SKPB' = m. Найдите SMPA' : SBPA'. Докажите, что если 0 < a, b < 1, то |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]
При каких натуральных n ≥ 2 неравенство
Решить уравнение (x² – x + 1)4 – 10x²(x² – x + 1)² + 9x4 = 0.
Докажите, что если 0 < a, b < 1, то
Решите системы: a)
Пусть a – заданное вещественное число, n – натуральное число, n > 1.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке