ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что в любом множестве, состоящем из 117 попарно различных трёхзначных чисел, можно выбрать четыре попарно непересекающихся подмножества, суммы чисел в которых равны.

   Решение

Задачи

Страница: << 134 135 136 137 138 139 140 >> [Всего задач: 1006]      



Задача 109711

Темы:   [ Тригонометрические неравенства ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 10,11

Автор: Храбров А.

Докажите неравенство   sinn2x + (sinnx – cosnx)² ≤ 1.

Прислать комментарий     Решение

Задача 110061

Темы:   [ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
Сложность: 4
Классы: 8,9,10,11

Докажите, что в любом множестве, состоящем из 117 попарно различных трёхзначных чисел, можно выбрать четыре попарно непересекающихся подмножества, суммы чисел в которых равны.

Прислать комментарий     Решение

Задача 116638

Темы:   [ Числовые таблицы и их свойства ]
[ Задачи с ограничениями ]
Сложность: 4
Классы: 8,9,10

Автор: Карасев Р.

В каждой клетке таблицы, состоящей из 10 столбцов и n строк, записана цифра. Известно, что для каждой строки A и любых двух столбцов найдётся строка, отличающаяся от A ровно в этих двух столбцах. Докажите, что  n ≥ 512.

Прислать комментарий     Решение

Задача 116699

Темы:   [ Степень вершины ]
[ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 11

На собрание пришло n человек  (n > 1).  Оказалось, что у каждых двух из них среди собравшихся есть ровно двое общих знакомых.
  а) Докажите, что каждый из них знаком с одинаковым числом людей на этом собрании.
  б) Покажите, что n может быть больше 4.

Прислать комментарий     Решение

Задача 67325

Темы:   [ Обход графов ]
[ Теория графов (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10,11

Петя и Вася независимо друг от друга разбивают белую клетчатую доску $100\times 100$ на произвольные группы клеток, каждая из чётного (но не обязательно все из одинакового) числа клеток, каждый  – на свой набор групп. Верно ли, что после этого всегда можно покрасить по половине клеток в каждой группе из разбиения Пети в чёрный цвет так, чтобы в каждой группе из разбиения Васи было поровну чёрных и белых клеток?
Прислать комментарий     Решение


Страница: << 134 135 136 137 138 139 140 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .