Страница:
<< 144 145 146 147
148 149 150 >> [Всего задач: 769]
|
|
Сложность: 5 Классы: 9,10,11
|
Дан вписанный в окружность $\Omega$ четырехугольник $ABCD$. На диагонали $AC$ берутся пары точек $P$, $Q$ таких, что лучи $BP$ и $BQ$ симметричны относительно биссектрисы угла $B$. Найдите геометрическое место центров окружностей $PDQ$.
|
|
Сложность: 5 Классы: 9,10,11
|
Окружности
σ 1 и
σ 2 пересекаются в точках
A и
B . В точке
A к
σ 1 и
σ 2 проведены
соответственно касательные
l1 и
l2 .
Точки
T1 и
T2 выбраны соответственно на окружностях
σ 1 и
σ 2
так, что угловые меры дуг
T1A и
AT2 равны (величина дуги окружности считается по часовой стрелке).
Касательная
t1 в точке
T1 к окружности
σ 1 пересекает
l2 в точке
M1 .
Аналогично, касательная
t2 в точке
T2 к окружности
σ 2 пересекает
l1 в точке
M2 .
Докажите, что середины отрезков
M1M2 находятся на одной прямой,
не зависящей от положения точек
T1 ,
T2 .
Две окружности
σ1 и
σ2 пересекаются в точках
A и
B .
Пусть
PQ и
RS – отрезки общих внешних касательных к этим окружностям (точки
P и
R лежат на
σ1 ,
точки
Q и
S – на
σ2 ).
Оказалось, что
RB|| PQ . Луч
RB вторично пересекает
σ2 в точке
W .
Найдите отношение
RB/BW .
|
|
Сложность: 5+ Классы: 8,9,10,11
|
Сетка линий, изображённая на рисунке, состоит из концентрических окружностей с радиусами 1, 2, 3, 4,... и центром в
точке О, прямой l, проходящей через
точку О, и всевозможных касательных к окружностям,
параллельных l. Вся плоскость разбита этими линиями на клетки, которые раскрашены в шахматном порядке. В цепочке точек, показанных на рисунке, каждые две соседние точки являются противоположными вершинами тёмной клетки. Докажите, что все точки такой бесконечной цепочки лежат на одной параболе (поэтому рисунок словно соткан из светлых и тёмных парабол).
|
|
Сложность: 5+ Классы: 9,10,11
|
Точки
A' ,
B' и
C' "– середины сторон
BC ,
CA и
AB треугольника
ABC соответственно, а
BH "– его
высота. Докажите, что если описанные около треугольников
AHC' и
CHA' окружности проходят через точку
M , отличную от
H , то
ABM= CBB' .
Страница:
<< 144 145 146 147
148 149 150 >> [Всего задач: 769]