ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В коммерческом турнире по футболу участвовало пять команд. Каждая должна была сыграть с каждой из остальных ровно один матч. В связи с финансовыми трудностями организаторы некоторые игры отменили. В итоге оказалось, что все команды набрали различное число очков и ни одна команда в графе набранных очков не имеет нуля. Какое наименьшее число игр могло быть сыграно в турнире, если за победу начислялось три очка, за ничью – одно, за поражение – ноль?

   Решение

Задачи

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 1110]      



Задача 110106

Темы:   [ Числовые таблицы и их свойства ]
[ Простые числа и их свойства ]
[ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 7,8,9

Можно ли все клетки таблицы 9×2002 заполнить натуральными числами так, чтобы суммы чисел в каждом столбце и суммы чисел в каждой строке были бы простыми числами?

Прислать комментарий     Решение

Задача 110107

Темы:   [ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Автор: Лифшиц Ю.

Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое).

Прислать комментарий     Решение

Задача 110161

Темы:   [ Числовые таблицы и их свойства ]
[ Признаки делимости на 11 ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 9,10,11

В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?

Прислать комментарий     Решение

Задача 110185

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

В коммерческом турнире по футболу участвовало пять команд. Каждая должна была сыграть с каждой из остальных ровно один матч. В связи с финансовыми трудностями организаторы некоторые игры отменили. В итоге оказалось, что все команды набрали различное число очков и ни одна команда в графе набранных очков не имеет нуля. Какое наименьшее число игр могло быть сыграно в турнире, если за победу начислялось три очка, за ничью – одно, за поражение – ноль?

Прислать комментарий     Решение

Задача 110191

Тема:   [ Задачи на движение ]
Сложность: 3+
Классы: 7,8,9

В 12 часов дня "Запорожец" и "Москвич" находились на расстоянии 90 км и начали двигаться навстречу друг другу с постоянной скоростью. Через два часа они снова оказались на расстоянии 90 км. Незнайка утверждает, что "Запорожец" до встречи с "Москвичом" и "Москвич" после встречи с "Запорожцем" проехали в сумме 60 км. Докажите, что он неправ.

Прислать комментарий     Решение

Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .