ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Двое игроков по очереди расставляют в каждой из 24 клеток поверхности куба 2×2×2 числа 1, 2, 3, 24 (каждое число можно ставить один раз). Второй игрок хочет, чтобы суммы чисел в клетках каждого кольца из 8 клеток, опоясывающего куб, были одинаковыми. Сможет ли первый игрок ему помешать? Решение |
Страница: << 227 228 229 230 231 232 233 >> [Всего задач: 1308]
а) Докажите, что если игрок делает ход из позиции с нулевой ним-суммой, то в результате получается позиция с ним-суммой n 0. б) Докажите, что из позиции с ненулевой ним-суммой всегда можно сделать ход в позицию с ним-суммой n = 0. в) Опишите выигрышную стратегию в игру ``Ним''. г) Какой следует сделать ход, если перед вами три кучки: 3, 4 и 5 камней?
Двое игроков играют в карточную игру. У них есть колода из n попарно различных карт. Про любые две карты из колоды известно, какая из них бьёт другую (при этом, если A бьёт B, а B бьёт C, то может оказаться, что C бьёт A). Колода распределена между игроками произвольным образом. На каждом ходу игроки открывают по верхней карте из своих колод, и тот, чья карта бьёт карту другого игрока, берёт обе карты и кладёт их в самый низ своей колоды в произвольном порядке по своему усмотрению. Докажите, что при любой исходной раздаче игроки могут, зная расположение карт, договориться и действовать так, чтобы один из игроков остался без карт.
Страница: << 227 228 229 230 231 232 233 >> [Всего задач: 1308] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|