ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Двое игроков по очереди расставляют в каждой из 24 клеток поверхности куба 2×2×2 числа 1, 2, 3, 24 (каждое число можно ставить один раз). Второй игрок хочет, чтобы суммы чисел в клетках каждого кольца из 8 клеток, опоясывающего куб, были одинаковыми. Сможет ли первый игрок ему помешать?

   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 302]      



Задача 78302

Темы:   [ Площадь и ортогональная проекция ]
[ Площадь и объем (задачи на экстремум) ]
[ Прямоугольные параллелепипеды ]
Сложность: 4+
Классы: 11

Как надо расположить в пространстве прямоугольный параллелепипед, чтобы площадь его проекции на горизонтальную плоскость была наибольшей?
Прислать комментарий     Решение


Задача 110186

Темы:   [ Свойства разверток ]
[ Симметричная стратегия ]
[ Куб ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 9,10,11

Двое игроков по очереди расставляют в каждой из 24 клеток поверхности куба 2×2×2 числа 1, 2, 3, 24 (каждое число можно ставить один раз). Второй игрок хочет, чтобы суммы чисел в клетках каждого кольца из 8 клеток, опоясывающего куб, были одинаковыми. Сможет ли первый игрок ему помешать?
Прислать комментарий     Решение


Задача 104006

Темы:   [ Замощения костями домино и плитками ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Куб ]
Сложность: 5
Классы: 7,8,9,10

а) Наконец, у Снежной Королевы появились все квадраты с целыми сторонами, но каждый в единственном экземпляре. Королева пообещала Каю, что он станет мудрым, если сможет из каких-то имеющихся квадратов сложить прямоугольник. Сможет ли он это сделать?
б) Отдыхая, Кай стал заполнять стеклянный аквариум ледяными кубиками, которые лежали рядом. Кубики были самых разных размеров, но среди них не было двух одинаковых. Сможет ли Кай заполнить аквариум кубиками целиком?
Прислать комментарий     Решение


Задача 103777

Темы:   [ Наглядная геометрия в пространстве ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Раскраски ]
[ Куб ]
Сложность: 2
Классы: 7

Автор: Ботин Д.А.

Составьте куб 3×3×3 из красных, жёлтых и зелёных кубиков 1×1×1 так, чтобы в любом бруске 3×1×1 были кубики всех трёх цветов.

Прислать комментарий     Решение


Задача 103785

Темы:   [ Наглядная геометрия в пространстве ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Раскраски ]
[ Куб ]
Сложность: 2
Классы: 7

Автор: Ботин Д.А.

Имеется много красных, жёлтых и зелёных кубиков 1×1×1. Можно ли сложить из них куб 3×3×3 так, чтобы в каждом блоке 3×1×1 присутствовали все три цвета?

Прислать комментарий     Решение


Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 302]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .