ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Каждую вершину трапеции отразили симметрично относительно диагонали, не содержащей эту вершину.
Докажите, что если получившиеся точки образуют четырёхугольник, то он также является трапецией.

   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 152]      



Задача 110188

Темы:   [ Свойства симметрий и осей симметрии ]
[ Трапеции (прочее) ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9

Каждую вершину трапеции отразили симметрично относительно диагонали, не содержащей эту вершину.
Докажите, что если получившиеся точки образуют четырёхугольник, то он также является трапецией.

Прислать комментарий     Решение

Задача 53847

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема Пифагора (прямая и обратная) ]
[ Признаки подобия ]
Сложность: 4
Классы: 8,9

В равнобедренной трапеции KLMN основание KN равно 9, основание LM равно 5. Точки P и Q лежат на диагонали LN, причём точка P расположена между точками L и Q, а отрезки KP и MQ перпендикулярны диагонали LN. Найдите площадь трапеции KLMN, если  QN/LP = 5.

Прислать комментарий     Решение

Задача 108126

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Пересекающиеся окружности ]
[ Признаки подобия ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 8,9

Диагонали вписанного четырёхугольника ABCD пересекаются в точке O. Пусть описанные окружности S1 и S2 треугольников ABO и CDO второй раз пересекаются в точке K. Прямые, проходящие через точку O параллельно прямым AB и CD, вторично пересекают S1 и S2 в точках L и M соответственно. На отрезках OL и OM выбраны соответственно точки P и Q, причём  OP : PL = MQ : QO.  Докажите, что точки O, K, P, Q лежат на одной окружности.

Прислать комментарий     Решение

Задача 109518

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки подобия ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 4
Классы: 8,9,10

Верно ли, что любые два прямоугольника равной площади можно расположить на плоскости так, что любая горизонтальная прямая, пересекающая один из них, будет пересекать и второй, причём по отрезку той же длины?

Прислать комментарий     Решение

Задача 116343

Темы:   [ Средняя линия треугольника ]
[ Ортоцентр и ортотреугольник ]
[ Признаки подобия ]
[ Вписанные и описанные окружности ]
[ Теорема косинусов ]
[ Теорема синусов ]
[ Площадь четырехугольника ]
Сложность: 4
Классы: 8,9,10

Точки A1, B1 и C1 – основания высот треугольника ABC. Известно, что  A1B1 = 13,  B1C1 = 14,  A1C1 = 15.  Найдите площадь треугольника ABC.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 152]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .