ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В правильной треугольной призме ABCA1B1C1 (AA1|| BB1 || CC1) угол между прямыми AC1 и A1B равен α , AA1 = 2 . Найдите AB .

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132]      



Задача 110284

Тема:   [ Сфера, описанная около призмы ]
Сложность: 3
Классы: 10,11

Известно, что около некоторой призмы можно описать сферу. Докажите, что основание призмы ─ многоугольник, около которого можно описать окружность. Найдите радиус окружности, если высота призмы равна h, а радиус описанной около призмы сферы равен R.
Прислать комментарий     Решение


Задача 110430

Темы:   [ Правильная призма ]
[ Cкрещивающиеся прямые, угол между ними ]
Сложность: 3
Классы: 10,11

В правильной треугольной призме ABCA1B1C1 (AA1|| BB1 || CC1) угол между прямыми AC1 и A1B равен α , AA1 = 2 . Найдите AB .
Прислать комментарий     Решение


Задача 111124

Темы:   [ Правильная призма ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Найдите расстояние между серединами непараллельных сторон разных оснований правильной треугольной призмы, все рёбра которой равны 2.
Прислать комментарий     Решение


Задача 66272

Темы:   [ Прямая призма ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Существует ли выпуклый многогранник, у которого рёбер столько же, сколько диагоналей? (Диагональю многогранника называется отрезок, соединяющий две вершины, не лежащие в одной грани.)

Прислать комментарий     Решение

Задача 98469

Темы:   [ Призма (прочее) ]
[ Раскраски ]
[ Теория графов (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

В основании призмы лежит n-угольник. Требуется раскрасить все 2n её вершин тремя красками так, чтобы каждая вершина была связана рёбрами с вершинами всех трёх цветов.
  а) Докажите, что если n делится на 3, то такая раскраска возможна.
  б) Докажите, что если если такая раскраска возможна, то n делится на 3.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .