Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Найдите наименьшее натуральное n, для которого существует такое m, что  

Вниз   Решение


Дан угол и две точки внутри него. Постройте окружность, проходящую через эти точки и высекающую на сторонах угла равные отрезки.

ВверхВниз   Решение


Дан треугольник с периметром, равным 24. Найдите периметр треугольника с вершинами в серединах сторон данного.

ВверхВниз   Решение


Компьютеры 1, 2, 3, ..., 100 соединены в кольцо (первый со вторым, второй с третьим, ..., сотый с первым). Хакеры подготовили 100 вирусов, занумеровали их и в различное время в произвольном порядке запускают каждый вирус на компьютер, имеющий тот же номер. Если вирус попадает на незаражённый компьютер, то он заражает его и переходит на следующий в цепи компьютер с большим номером до тех пор, пока не попадёт на уже заражённый компьютер (с компьютера 100 вирус переходит на компьютер 1). Тогда вирус погибает, а этот компьютер восстанавливается. Ни на один компьютер два вируса одновременно не попадают. Сколько компьютеров будет заражено в результате атаки этих 100 вирусов?

ВверхВниз   Решение


Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников?

ВверхВниз   Решение


Найдите геометрическое место точек M, из которых данный отрезок AB виден под прямым углом.

ВверхВниз   Решение


Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P.
Докажите, что треугольники APD и BPC равнобедренные.

ВверхВниз   Решение


В треугольник, у которого основание равно 30, а высота – 10, вписан прямоугольный равнобедренный треугольник так, что его гипотенуза параллельна основанию данного треугольника, а вершина прямого угла лежит на этом основании. Найдите гипотенузу.

ВверхВниз   Решение


В круге проведены два перпендикулярных диаметра. Рассмотрим четыре круга, диаметрами которых служат четыре получившихся радиуса исходной окружности (рис.1). Докажите, что суммарная площадь попарно общих частей этих кругов равна площади части исходного круга, лежащей вне рассматриваемых четырёх кругов.

ВверхВниз   Решение


Три сферы, радиусы которых равны , 1 и 1, попарно касаются друг друга. Через прямую, содержащую центры A и B второй и третьей сфер, проведена плоскость γ так, что центр O первой сферы удалён от этой плоскости на расстояние 1. Найдите угол между проекциями прямых OA и OB на плоскость γ и сравните его с arccos .

Вверх   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 449]      



Задача 110438

Темы:   [ Правильная пирамида ]
[ Теорема косинусов ]
Сложность: 3
Классы: 10,11

Дана правильная треугольная пирамида SABC . Точка S – вершина пирамиды, SA = 2 , BC = 3 , BM – медиана основания пирамиды, AR – высота треугольника ASB . Найдите длину отрезка MR .
Прислать комментарий     Решение


Задача 110449

Темы:   [ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Из точки M на плоскость α опущен перпендикуляр MH длины и проведены две наклонные, составляющие с перпендикуляром углы по 60o . Угол между наклонными равен 120o . а) Найдите расстояние между основаниями A и B наклонных. б) На отрезке AB как на катете в плоскости α построен прямоугольный треугольник ABC (угол A – прямой). Найдите объём пирамиды MABC , зная, что cos BMC = - .
Прислать комментарий     Решение


Задача 110450

Темы:   [ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Из точки M на плоскость α опущен перпендикуляр MH длины 3 и проведены две наклонные, составляющие с перпендикуляром углы по 30o . Угол между наклонными равен 60o . а) Найдите расстояние между основаниями A и B наклонных. б) На отрезке AB как на катете в плоскости α построен прямоугольный треугольник ABC (угол A – прямой). Найдите объём пирамиды MABC , зная, что cos BCM = .
Прислать комментарий     Решение


Задача 110459

Темы:   [ Касающиеся сферы ]
[ Теорема косинусов ]
Сложность: 3
Классы: 10,11

Три сферы, радиусы которых равны , 1 и 1, попарно касаются друг друга. Через прямую, содержащую центры A и B второй и третьей сфер, проведена плоскость γ так, что центр O первой сферы удалён от этой плоскости на расстояние 1. Найдите угол между проекциями прямых OA и OB на плоскость γ и сравните его с arccos .
Прислать комментарий     Решение


Задача 110460

Темы:   [ Касающиеся сферы ]
[ Теорема косинусов ]
Сложность: 3
Классы: 10,11

Три сферы, радиусы которых равны , 3 и 3, попарно касаются друг друга. Через центр P первой сферы проведена плоскость β так, что прямая, содержащая центры C и D второй и третьей сфер параллельна β и удалена от этой плоскости на расстояние 1. Найдите угол между проекциями прямых PC и PD на плоскость β и сравните его с arccos .
Прислать комментарий     Решение


Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 449]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .