Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 64]
|
|
Сложность: 4 Классы: 10,11
|
Три шара радиусов 1, 3 и 4 расположены так, что каждый из них касается
двух других шаров и двух данных плоскостей. Найдите расстояние между
точками касания первого из этих шаров с плоскостями.
|
|
Сложность: 4 Классы: 10,11
|
Теорема косинусов для тетраэдра.}Квадрат площади
каждой грани тетраэдра равен сумме квадратов площадей трёх остальных
граней без удвоенных попарных произведений площадей этих граней на
косинусы двугранных углов между ними, т.е.
S20 = S21+S22+S23-
2S1S2 cos α12-
2S1S3 cos α13-
2S2S3 cos α23.
|
|
Сложность: 4 Классы: 10,11
|
Сторона основания
ABC пирамиды
TABC равна 4, боковое
ребро
TA перпендикулярно плоскости основания. Найдите
площадь сечения пирамиды плоскостью, проходящей через
середины рёбер
AC и
BT параллельно медиане
BD
грани
BCT , если известно, что расстояние от вершины
T до этой плоскости равно
.
Как надо расположить в пространстве прямоугольный параллелепипед, чтобы площадь
его проекции на горизонтальную плоскость была наибольшей?
|
|
Сложность: 5 Классы: 9,10,11
|
Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1. Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 64]