ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Высота правильной пирамиды SABCD равна 3, угол между соседними боковыми рёбрами равен arccos . Точки E , F , K выбраны соответственно на рёбрах AB , AD , SC так, что = = = . Найдите: 1) площадь сечения пирамиды плоскостью EFK ; 2) расстояние от точки D до плоскости EFK ; 3) угол между прямой SD и плоскостью EFK .

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 64]      



Задача 110522

Темы:   [ Правильная пирамида ]
[ Площадь сечения ]
[ Площадь и ортогональная проекция ]
[ Углы между прямыми и плоскостями ]
Сложность: 4
Классы: 10,11

Сторона основания правильной пирамиды SABCD равна 1, боковое ребро образует с основанием ABCD угол, равный arctg 4 . Точки E , F , K выбраны соответственно на рёбрах AB , AD , SC так, что = = = . Найдите: 1) площадь сечения пирамиды плоскостью EFK ; 2) расстояние от точки D до плоскости EFK ; 3) угол между прямой SD и плоскостью EFK .
Прислать комментарий     Решение


Задача 110523

Темы:   [ Правильная пирамида ]
[ Площадь сечения ]
[ Площадь и ортогональная проекция ]
[ Углы между прямыми и плоскостями ]
Сложность: 4
Классы: 10,11

Высота правильной пирамиды SABCD равна 3, угол между соседними боковыми рёбрами равен arccos . Точки E , F , K выбраны соответственно на рёбрах AB , AD , SC так, что = = = . Найдите: 1) площадь сечения пирамиды плоскостью EFK ; 2) расстояние от точки D до плоскости EFK ; 3) угол между прямой SD и плоскостью EFK .
Прислать комментарий     Решение


Задача 110524

Темы:   [ Правильная пирамида ]
[ Площадь сечения ]
[ Площадь и ортогональная проекция ]
[ Углы между прямыми и плоскостями ]
Сложность: 4
Классы: 10,11

Сторона основания правильной пирамиды SABCD равна 2, боковая грань образует с основанием угол, равный arctg 2 . Точки E , F , K выбраны соответственно на рёбрах AB , AD , SC так, что = = = 2 . Найдите: 1) площадь сечения пирамиды плоскостью EFK ; 2) расстояние от точки D до плоскости EFK ; 3) угол между прямой SD и плоскостью EFK .
Прислать комментарий     Решение


Задача 110580

Темы:   [ Площадь сечения ]
[ Прямая призма ]
[ Площадь и ортогональная проекция ]
Сложность: 4
Классы: 10,11

Основание прямой призмы ABCA1B1C1 – треугольник ABC , в котором AB=BC=5 , AC=6 . Высота призмы равна . На рёбрах AC , BC и A1C1 выбраны соответственно точки D , E и D1 так, что DC=AC , BE=CE , A1D1= A1C1 , и через эти точки проведена плоскость Π . Найдите: 1) площадь сечения призмы плоскостью Π ; 2) угол между плоскостью Π и плоскостью ABC ; 3) расстояния от точек C1 и C до плоскости Π .
Прислать комментарий     Решение


Задача 110581

Темы:   [ Площадь сечения ]
[ Прямая призма ]
[ Площадь и ортогональная проекция ]
Сложность: 4
Классы: 10,11

Основание прямой призмы ABCA1B1C1 – треугольник ABC , в котором AB=BC=5 , AC=6 . Высота призмы равна . На рёбрах A1C1 , B1C1 и AC выбраны соответственно точки D1 , E1 и D так, что D1C1=A1C1 , B1E1=C1E1 , AD= AC , и через эти точки проведена плоскость Π . Найдите: 1) площадь сечения призмы плоскостью Π ; 2) угол между плоскостью Π и плоскостью ABC ; 3) расстояния от точек C и C1 до плоскости Π .
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 64]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .