Страница: 1
2 3 >> [Всего задач: 12]
|
|
Сложность: 3 Классы: 10,11
|
Известно, что в некоторую призму можно вписать сферу. Найдите площадь её боковой поверхности, если площадь основания равна
S.
|
|
Сложность: 4 Классы: 10,11
|
Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых.
|
|
Сложность: 4 Классы: 10,11
|
В основании призмы
ABCDA₁
B₁
C₁
D₁ лежит прямоугольник
ABCD. Острые углы
D₁
DA и
D₁
DC равны между собой, угол между
Найдите
BC и угол между плоскостями
D₁
DC и
ABC, а также расстояние от точки
D до центра сферы.
|
|
Сложность: 4 Классы: 10,11
|
Все грани призмы
ABCDA₁
B₁
C₁
D₁ касаются некоторого шара. Основанием призмы служит квадрат
ABCD со стороной, равной 5. Угол
C₁
CD ─ острый, а ∠
C₁
CB = arctg ⁵⁄₃. Найдите ∠
C₁
CD, угол между боковым ребром и плоскостью основания призмы, а также расстояние от точки
C до точки касания шара с плоскостью
AA₁
D.
|
|
Сложность: 4 Классы: 10,11
|
В основании призмы
ABCDA₁
B₁
C₁
D₁ лежит параллелограмм
ABCD,
AB = 8, а ∠
BAD = π/3. Острые углы
A₁
AB и
A₁
AD равны между
Найдите ребро
AD и угол между плоскостями
AA₁
B и
ABC, а также расстояние от точки
A до центра сферы.
Страница: 1
2 3 >> [Всего задач: 12]