ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Через центр O окружности Σ , описанной около треугольника ABC , проведена прямая, параллельная BC и пересекающая стороны AB и AC в точках B1 и C1 соответственно. Окружность σ проходит через точки B1 и C1 и касается Σ в точке K . Найдите угол между прямыми AK и BC . Найдите площадь треугольника ABC и радиус окружности Σ , если B1C1=6 , AK=6 , а расстояние между прямыми BC и B1C1 равно 1. В турнире по теннису n участников хотят провести парные (двое на двое) матчи так, чтобы каждый из участников имел своим противником каждого из остальных ровно в одном матче. При каких n возможен такой турнир?
Точки E и F являются серединами отрезков AB и CD
соответственно, а прямая EF перпендикулярна прямым AB и CD . Найдите
угол между скрещивающимися прямыми AB и CD , если известно, что угол
ACB равен arccos Через точку A проведены две прямые: одна из них касается окружности в точке B, а другая пересекает эту окружность в точках C и D так, что точка C лежит на отрезке AD. Найдите AC, BC и радиус окружности, если В треугольнике ABC точка O является центром описанной окружности. Через вершину B проведена прямая, перпендикулярная AO, пересекающая прямую AC в точке K, а через вершину C проведена прямая, также перпендикулярная AO, пересекающая сторону AB в точке M. Найдите BC, если BK = a, CM = b. Каждая из окружностей S1 , S2 и S3 касается внешним образом окружности S (в точках A1 , B1 и C1 соответственно) и двух сторон треугольника ABC (см.рис.). Докажите, что прямые AA1 , BB1 и CC1 пересекаются в одной точке. Через центр O окружности Σ , описанной около треугольника ABC , проведена прямая, параллельная BC и пересекающая стороны AB и AC в точках B1 и C1 соответственно. Окружность σ проходит через точки B1 и C1 и касается Σ в точке K . Найдите угол между прямыми AK и BC . Найдите площадь треугольника ABC и радиус окружности Σ , если B1C1=6 , AK=6 , а расстояние между прямыми BC и B1C1 равно 2. |
Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 329]
На медиане CD треугольника ABC отмечена точка E. Окружность S1, проходящая через точку E и касающаяся прямой AB в точке A, пересекает сторону AC в точке M. Окружность S2, проходящая через точку E и касающаяся прямой AB в точке B, пересекает сторону BC в точке N. Докажите, что описанная окружность треугольника CMN касается окружностей S1 и S2.
Пусть A0 – середина стороны BC треугольника ABC , а A' – точка касания с этой стороной вписанной окружности. Построим окружность с центром в точке A0 и проходящую через A' . На других сторонах построим аналогичные окружности. Докажите, что если окружность касается описанной окружности в точке дуги BC , не содержащей A , то ещё одна из построенных окружностей касается описанной.
Через центр O окружности Σ , описанной около треугольника ABC , проведена прямая, параллельная BC и пересекающая стороны AB и AC в точках B1 и C1 соответственно. Окружность σ проходит через точки B1 и C1 и касается Σ в точке K . Найдите угол между прямыми AK и BC . Найдите площадь треугольника ABC и радиус окружности Σ , если B1C1=6 , AK=6 , а расстояние между прямыми BC и B1C1 равно 2.
Через центр O окружности Σ , описанной около треугольника ABC , проведена прямая, параллельная BC и пересекающая стороны AB и AC в точках B1 и C1 соответственно. Окружность σ проходит через точки B1 и C1 и касается Σ в точке K . Найдите угол между прямыми AK и BC . Найдите площадь треугольника ABC и радиус окружности Σ , если BC=9 , AK=8 , B1C1=6 .
Через центр O окружности Σ , описанной около треугольника ABC , проведена прямая, параллельная BC и пересекающая стороны AB и AC в точках B1 и C1 соответственно. Окружность σ проходит через точки B1 и C1 и касается Σ в точке K . Найдите угол между прямыми AK и BC . Найдите площадь треугольника ABC и радиус окружности Σ , если B1C1=6 , AK=6 , а расстояние между прямыми BC и B1C1 равно 1.
Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 329]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке