ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Через точку A проведены две прямые: одна из них касается окружности в точке B, а другая пересекает эту окружность в точках C и D так, что D лежит на отрезке AC. Найдите AD, CD и радиус окружности, если  AB = 3BC = 8,  ∠ABD = arcsin ¾.

   Решение

Задачи

Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 1275]      



Задача 110880

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Через точку A проведены две прямые: одна из них касается окружности в точке B, а другая пересекает эту окружность в точках C и D так, что точка C лежит на отрезке AD. Найдите AC, BC и радиус окружности, если  

Прислать комментарий     Решение

Задача 110881

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Через точку A проведены две прямые: одна из них касается окружности в точке B, а другая пересекает эту окружность в точках C и D так, что D лежит на отрезке AC. Найдите AD, CD и радиус окружности, если  AB = 3BC = 8,  ∠ABD = arcsin ¾.

Прислать комментарий     Решение

Задача 110882

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9

Через точку A проведены две прямые: одна из них касается окружности в точке B, а другая пересекает эту окружность в точках C и D так, что точка C лежит на отрезке AD. Найдите AB, BC и радиус окружности, если  

Прислать комментарий     Решение

Задача 115683

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Вписанные и описанные окружности ]
[ Свойства биссектрис, конкуррентность ]
[ Неопределено ]
Сложность: 3+
Классы: 8,9

Прямая, содержащая сторону AC остроугольного треугольника ABC, симметрично отражается относительно прямых AB и BC. Две полученные прямые пересекаются в точке K. Докажите, что прямая BK проходит через центр O описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 115893

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9,10,11

Из вершины B треугольника ABC опущен перпендикуляр BM на биссектрису угла C. Пусть K – точка касания вписанной окружности со стороной BC.
Найдите угол MKB, если известно, что  ∠BAC = α.

Прислать комментарий     Решение

Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 1275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .