ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан ромб ABCD с тупым углом при вершине A. На продолжении стороны AD за точку D взята точка K. Отрезки BK и CD пересекаются в точке L.
Найдите площадь треугольника ABK, если  BL = 2,  KL = 5,  а высота ромба равна 1.

   Решение

Задачи

Страница: << 126 127 128 129 130 131 132 >> [Всего задач: 829]      



Задача 108697

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4-
Классы: 8,9

В остроугольном треугольнике ABC проведена высота CH. Оказалось, что  AH = BC.
Докажите, что биссектриса угла B, высота, опущенная из вершины A, и прямая, проходящая через точку H параллельно BC, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 108909

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Угол между касательной и хордой ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Биссектриса делит дугу пополам ]
Сложность: 4-
Классы: 8,9

Дана окружность Ω и точка P вне её. Проходящая через точку P прямая l пересекает окружность в точках A и B. На отрезке AB отмечена такая точка C, что  PA·PB = PC². Точки M и N – середины двух дуг, на которые хорда AB разбивает окружность Ω. Докажите, что величина угла MCN не зависит от выбора прямой l.

Прислать комментарий     Решение

Задача 108914

Темы:   [ Построения одной линейкой ]
[ Замечательное свойство трапеции ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

Даны две параллельные прямые и отрезок на одной из них. С помощью одной линейки разделите этот отрезок на три равные части.

Прислать комментарий     Решение

Задача 108926

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Три прямые, пересекающиеся в одной точке ]
[ Три точки, лежащие на одной прямой ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 8,9

В неравнобедренном треугольнике ABC проведены биссектрисы AA1 и CC1, кроме того, отмечены середины K и L сторон AB и BC соответственно. На прямую CC1 опущен перпендикуляр AP, а на прямую AA1 – перпендикуляр CQ. Докажите, что прямые KP и LQ пересекаются на стороне AC.

Прислать комментарий     Решение

Задача 110959

Темы:   [ Ромбы. Признаки и свойства ]
[ Вычисление площадей ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Дан ромб ABCD с тупым углом при вершине A. На продолжении стороны AD за точку D взята точка K. Отрезки BK и CD пересекаются в точке L.
Найдите площадь треугольника ABK, если  BL = 2,  KL = 5,  а высота ромба равна 1.

Прислать комментарий     Решение

Страница: << 126 127 128 129 130 131 132 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .