ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Сторона основания правильной четырёхугольной пирамиды SABCD ( S – вершина) равна 10. Точки E и F расположены на рёбрах DC и BC соответственно, причём CE=6 , CF=9 . Известно, что для данной пирамиды существует единственный конус, вершина которого совпадает с точкой E , центр основания лежит на прямой SA , а отрезок EF является одной из образующих. Найдите объём этого конуса. При подстановке в многочлены Чебышёва (см. задачу 61099) числа x = cos α получаются значения
Сфера касается боковых граней четырёхугольной пирамиды
SABCD в точках, лежащих на рёбрах AB , BC , CD , DA .
Известно, что высота пирамиды равна 2 На сторонах выпуклого n-угольника внешним образом построены правильные
n-угольники. Докажите, что их центры образуют правильный n-угольник тогда и
только тогда, когда исходный n-угольник аффинно правильный.
Внутри параллелограмма ABCD взята точка K так, что треугольник CKD равносторонний. Известно, что расстояния от точки K до прямых AD , AB и BC равны соответственно 3, 6 и 5. Найдите периметр параллелограмма. Высота и радиус основания цилиндра равны 1. Каким наименьшим числом шаров радиуса 1 можно целиком покрыть этот цилиндр? Докажите, что n³ + 2 не делится на 9 ни при каком натуральном n.
Четыре окружности попарно касаются внешним
образом (в шести различных точках). Пусть
a , b , c , d — их радиусы,
a = Найдите объём правильной шестиугольной пирамиды с боковым ребром b и углом α бокового ребра с плоскостью основания. Плоский угол при вершине правильной треугольной пирамиды равен ϕ . Найдите угол бокового ребра с плоскостью основания пирамиды. Внутри параллелограмма KLMN взята точка P так, что треугольник KPN равносторонний. Известно, что расстояния от точки P до прямых KL , LM и MN равны соответственно 10, 3 и 6. Найдите периметр параллелограмма. |
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 312]
Внутри параллелограмма ABCD взята точка K так, что треугольник CKD равносторонний. Известно, что расстояния от точки K до прямых AD , AB и BC равны соответственно 3, 6 и 5. Найдите периметр параллелограмма.
На стороне CD параллелограмма ABCD с тупым углом при вершине D построен равносторонний треугольник CDE так, что точки A и E лежат по разные стороны прямой CD . Известно, что расстояния от точек D и E до прямой BC равны соответственно 3 и 8, а расстояние от точки E до прямой AB равно 13. Найдите площадь параллелограмма ABCD .
Внутри параллелограмма KLMN взята точка P так, что треугольник KPN равносторонний. Известно, что расстояния от точки P до прямых KL , LM и MN равны соответственно 10, 3 и 6. Найдите периметр параллелограмма.
На стороне KN параллелограмма KLMN с тупым углом при вершине M построен равносторонний треугольник KTN так, что точки T и M лежат по разные стороны прямой KN . Известно, что расстояния от точек T и K до прямой MN равны соответственно 8 и 5, а расстояние от точки T до прямой LM равно 10. Найдите площадь параллелограмма KLMN .
В трапеции ABCD сторона AB перпендикулярна основаниям AD и BC . Окружность касается стороны AB в точке K , лежащей между точками A и B , проходит через точки C и D , пересекает отрезки AD и BC в их внутренних точках. Найдите расстояние от точки K до прямой CD , если AD=49 , BC=36 .
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 312]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке