ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Через центр O вписанной в треугольник ABC окружности проведена прямая, перпендикулярная прямой AO и пересекающая прямую BC в точке M.
Из точки O на прямую AM опущен перпендикуляр OD. Докажите, что точки A, B, C и D лежат на одной окружности.

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 149]      



Задача 53209

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены медианы AM и BP. Известно, что  ∠APB = ∠BMA,  cos∠ACB = 0,8,  BP = 1.  Найдите площадь треугольника ABC .

Прислать комментарий     Решение

Задача 78779

Темы:   [ Пространственные многоугольники ]
[ Сферы (прочее) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 11

Дана замкнутая пространственная ломаная с вершинами A1, A2, ..., An, причём каждое звено пересекает фиксированную сферу в двух точках, а все вершины ломаной лежат вне сферы. Эти точки делят ломаную на 3n отрезков. Известно, что отрезки, прилегающие к вершине A1, равны между собой. То же самое верно и для вершин A2, A3, ..., An - 1. Доказать, что отрезки, прилегающие к вершине An, также равны между собой.
Прислать комментарий     Решение


Задача 65369

Темы:   [ Пересекающиеся окружности ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Неравенство треугольника (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Автор: Мухин Д.Г.

Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что  2MN < AB.

Прислать комментарий     Решение

Задача 66090

Темы:   [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Отношение, в котором биссектриса делит сторону ]
[ Окружности, вписанные в сегмент ]
Сложность: 3+
Классы: 9,10,11

На вписанной окружности треугольника ABC, касающейся стороны AC в точке S, нашлась такая точка Q, что середины отрезков AQ и QC также лежат на вписанной окружности. Докажите, что QS – биссектриса угла AQC.

Прислать комментарий     Решение

Задача 111348

Темы:   [ Углы между биссектрисами ]
[ Четыре точки, лежащие на одной окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10,11

Через центр O вписанной в треугольник ABC окружности проведена прямая, перпендикулярная прямой AO и пересекающая прямую BC в точке M.
Из точки O на прямую AM опущен перпендикуляр OD. Докажите, что точки A, B, C и D лежат на одной окружности.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .