ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Две окружности радиусов R и r касаются внешним образом. Найдите площадь трапеции, образованной общими внешними касательными к этим окружностям и хордами, соединяющими точки касания. Решение |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 115]
Две окружности радиусов R и r (R > r) касаются внешним образом. Найдите радиусы окружностей, касающихся обеих данных окружностей и их общей внешней касательной.
Две окружности касаются друг друга внешним образом. Четыре точки A, B, C и D касания их общих внешних касательных последовательно соединены. Докажите, что в четырёхугольник ABCD можно вписать окружность и найдите её радиус, если радиусы данных окружностей равны R и r.
Две окружности касаются друг друга внешним образом в точке A. Найдите радиусы окружностей, если хорды, соединяющие точку A с точками касания с одной из общих внешних касательных, равны 6 и 8.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 115] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|