Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 115]
В треугольнике PQR медиана, проведённая из вершины Q, равна
. Окружности с центрами в вершинах P и R
и радиусами соответственно 5 и 1 касаются друг друга, а вершина Q
лежит на прямой, касающейся каждой из окружностей. Найдите площадь
S треугольника PQR, если известно, что S < 7.
|
|
Сложность: 5- Классы: 10,11
|
В треугольник ABC вписана окружность ω с центром в точке I. Около треугольника AIB описана окружность Г. Окружности ω и Г пересекаются в точках X и Y. Общие касательные к окружностям ω и Г пересекаются в точке Z. Докажите, что описанные окружности треугольников ABC и XYZ, касаются.
|
|
Сложность: 5+ Классы: 8,9,10,11
|
Общая внешняя касательная к окружностям $\omega_1$ и $\omega_2$ касается их в точках $T_1$, $T_2$ соответственно. Пусть $A$ – произвольная точка на продолжении отрезка $T_1T_2$ за точку $T_1$, а $B$ – точка на продолжении отрезка $T_1T_2$ за точку $T_2$ такая, что $AT_1=BT_2$. Отличные от прямой $T_1T_2$ касательные из $A$ к $\omega_1$ и из $B$ к $\omega_2$ пересекаются в точке $C$. Докажите, что нагелианы всех треугольников $ABC$ из вершины $C$ проходят через одну точку.
Две окружности касаются внешним образом. Найдите длину их общей внешней касательной (между точками касания), если радиусы равны 16 и 25.
Даны два одинаковых пересекающихся круга. Отношение расстояния
между их центрами к радиусу равно
2
m . Третий круг касается
внешним образом первых двух и их общей касательной. Найдите
отношение площади общей части первых двух кругов к площади
третьего круга.
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 115]