Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 115]
На плоскости расположены три окружности Ω1, Ω2, Ω3 радиусов r1, r2, r3 соответственно – каждая вне двух других, причём r1 > r2 и
r1 > r3. Из точки пересечения общих внешних касательных к окружностям Ω1 и Ω2 проведены касательные к окружности Ω3, а из точки пересечения общих внешних касательных к окружностям Ω1 и Ω3 проведены касательные к окружности Ω2. Докажите, что последние две пары
касательных образуют четырёхугольник, в который можно вписать окружность, и
найдите её радиус.
Две окружности пересекаются в точках A и B. Третья окружность касается их обеих и пересекает прямую AB в точках C и D.
Докажите, что касательные к ней в этих точках параллельны общим касательным к двум первым окружностям.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В угол вписаны три окружности $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ (радиус $\Gamma_1$ наименьший, а радиус $\Gamma_3$ наибольший), притом $\Gamma_2$ касается $\Gamma_1$ и $\Gamma_3$ в точках $A$ и $B$ соответственно. Пусть $l$ – касательная в точке $A$ к $\Gamma_1$. Рассмотрим все окружности $\omega$, касающиеся $\Gamma_1$ и $l$. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей $\omega$ и $\Gamma_3$.
|
|
Сложность: 4 Классы: 8,9,10
|
Можно ли покрыть плоскость окружностями так, чтобы через каждую точку
проходило ровно 1988 окружностей?
Окружности
C1
и
C2
внешне касаются в точке
A .
Прямая
l касается окружности
C1
в точке
B , а окружности
C2
– в точке
D . Через точку
A проведены две прямые:
одна проходит через точку
B и пересекает окружность
C2
в точке
F , а другая касается окружностей
C1
и
C2
и
пересекает прямую
l в точке
E . Найдите радиусы окружностей
C1
и
C2
, если
AF=3
,
BE= .
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 115]