ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 115]      



Задача 52700

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Окружности радиусов r и R  (R > r)  касаются внешним образом в точке K. К ним проведены две общие внешние касательные. Их точки касания с меньшей окружностью – A и D, с большей – B и C соответственно.
  а) Найдите AB и отрезок MN общей внутренней касательной, заключённый между внешними касательными.
  б) Докажите, что углы AKB и O1MO2 – прямые (O1 и O2 – центры окружностей).

Прислать комментарий     Решение

Задача 52752

Темы:   [ Описанные четырехугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

В четырёхугольнике ABCD расположены две непересекающиеся окружности так, что одна из них касается сторон AB, BC и CD, а другая – сторон AB, AD и CD. Прямая MN пересекает стороны AB и CD соответственно в точках M и N и касается обеих окружностей. Найдите расстояние между центрами окружностей, если периметр четырёхугольника MBCN равен 2p,  BC = a  и разность радиусов окружностей равна r.

Прислать комментарий     Решение

Задача 52701

Темы:   [ Касающиеся окружности ]
[ Отношения линейных элементов подобных треугольников ]
[ Общая касательная к двум окружностям ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4-
Классы: 8,9

Точки M и N принадлежат боковым сторонам соответственно AB и AC равнобедренного треугольника ABC, причём  MN || BC,  а в трапецию BMNC можно вписать окружность. Её радиус равен R, а радиус вписанной окружности треугольника AMN равен r. Найдите
  а) основание BC;
  б) расстояние от точки A до ближайшей точки касания;
  в) расстояние между хордами окружностей, соединяющими точки касания с боковыми сторонами трапеции BMNC.

Прислать комментарий     Решение

Задача 53001

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Общая касательная к двум окружностям ]
Сложность: 4-
Классы: 8,9

В прямоугольном секторе AOB из точки B как из центра проведена дуга OC (C – точка пересечения этой дуги с дугой AB) радиуса BO. Окружность S1 касается дуги AB, дуги OC и прямой OA, а окружность S2 касается дуги AB, прямой OA и окружности S1. Найдите отношение радиуса окружности S1 к радиусу окружности S2.

Прислать комментарий     Решение

Задача 116952

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Общая касательная к двум окружностям ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Три попарно непересекающиеся окружности ωx, ωy, ωz радиусов rx, ry, rz лежат по одну сторону от прямой t и касаются её в точках X, Y, Z соответственно. Известно, что Y – середина отрезка XZ,  rx = rz = r,  а  ry > r.  Пусть p – одна из общих внутренних касательных к окружностям ωx и ωy, а q – одна из общих внутренних касательных к окружностям ωy и ωz. В пересечении прямых p, q, t образовался неравнобедренный треугольник. Докажите, что радиус его вписанной окружности равен r.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 115]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .