ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сторонах AB и AC равностороннего треугольника ABC
выбраны точки P и R соответственно так, что AP = CR. Точка M – середина отрезка PR. |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 71]
На сторонах AB и AC равностороннего треугольника ABC
выбраны точки P и R соответственно так, что AP = CR. Точка M – середина отрезка PR.
У тетраэдра ABCD сумма площадей двух граней (с общим ребром AB) равна сумме площадей оставшихся граней (с общим ребром CD). Докажите, что середины рёбер BC, AD, AC и BD лежат в одной плоскости, причём эта плоскость содержит центр сферы, вписанной в тетраэдр ABCD.
Пусть P – точка пересечения диагоналей четырёхугольника ABCD, M – точка пересечения прямых, соединяющих середины его противоположных сторон, O – точка пересечения серединных перпендикуляров к диагоналям, H – точка пересечения прямых, соединяющих ортоцентры треугольников APD и BPC, APB и CPD. Доказать, что M – середина OH.
Докажите, что среди четырехугольников с заданными длинами диагоналей и углом между ними наименьший периметр имеет параллелограмм.
Диагонали выпуклого четырёхугольника равны 12 и 18 и пересекаются в точке O.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 71]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке