Страница:
<< 9 10 11 12 13
14 15 >> [Всего задач: 71]
На сторонах AB и AC равностороннего треугольника ABC
выбраны точки P и R соответственно так, что AP = CR. Точка M – середина отрезка PR.
Докажите, что BR = 2AM .
|
|
Сложность: 4 Классы: 10,11
|
У тетраэдра ABCD сумма площадей двух граней (с общим ребром AB) равна сумме площадей оставшихся граней (с общим ребром CD). Докажите, что середины рёбер BC, AD, AC и BD лежат в одной плоскости, причём эта плоскость содержит центр сферы, вписанной в тетраэдр ABCD.
|
|
Сложность: 4 Классы: 8,9,10
|
Пусть P – точка пересечения диагоналей четырёхугольника ABCD, M – точка пересечения прямых, соединяющих середины его противоположных сторон, O – точка пересечения серединных перпендикуляров к диагоналям, H – точка пересечения прямых, соединяющих ортоцентры треугольников APD и BPC, APB и CPD. Доказать, что M – середина OH.
|
|
Сложность: 4+ Классы: 8,9,10
|
Докажите, что среди четырехугольников с заданными длинами диагоналей и углом между ними наименьший периметр имеет параллелограмм.
Диагонали выпуклого четырёхугольника равны 12 и 18 и пересекаются в точке O.
Найдите стороны четырёхугольника с вершинами в точках пересечения медиан треугольников AOB, BOC, COD и AOD.
Страница:
<< 9 10 11 12 13
14 15 >> [Всего задач: 71]