Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Сфера с центром в плоскости основания ABC тетраэдра SABC проходит через вершины A , B и C и вторично пересекает ребра SA , SB и SC в точках A1 , B1 и C1 соответственно. Плоскости, касающиеся сферы в точках A1 , B1 и C1 , пересекаются в точке O . Докажите, что O – центр сферы, описанной около тетраэдра SA1B1C1 .

Вниз   Решение


В остроугольном треугольнике ABC проведены медиана AM, биссектриса BK и высота CH. Может ли площадь треугольника, образованного точками пересечения этих отрезков, быть больше 0, 499SABC?

ВверхВниз   Решение


Выпуклый четырехугольник разделен диагоналями на четыре треугольника. Докажите, что прямая, соединяющая точки пересечения медиан двух противоположных треугольников, перпендикулярна прямой, соединяющей точки пересечения высот двух других треугольников.

ВверхВниз   Решение


Имеется две кучки камней - по 7 в каждой. За ход разрешается взять любое количество камней, но только из одной кучки. Проигрывает тот, кому нечего брать.

ВверхВниз   Решение


Для определения эффективной температуры звёзд используют закон Стефана — Больцмана, согласно которому мощность излучения нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: Ropf; = σ ST4 , где σ = 5,7· 10-8  — числовой коэффициент, площадь измеряется в квадратных метрах, температура — в градусах Кельвина, а мощность — в ваттах. Известно, что некоторая звезда имеет площадь S = · 1014 м2 , а излучаемая ею мощность P не менее 9,12· 1015 , определите наименьшую возможную температуру этой звезды.

ВверхВниз   Решение


Окружность радиуса r1 касается сторон DA, AB и BC выпуклого четырехугольника ABCD, окружность радиуса r2 — сторон AB, BC и CD; аналогично определяются r3 и r4. Докажите, что  $ {\frac{AB}{r_1}}$ + $ {\frac{CD}{r_3}}$ = $ {\frac{BC}{r_2}}$ + $ {\frac{AD}{r_4}}$.

ВверхВниз   Решение


Изначально на доске записаны несколько натуральных чисел (больше одного). Затем каждую минуту на доску дописывается число, равное сумме квадратов всех уже записанных на ней чисел (так, если бы на доске изначально были записаны числа 1, 2, 2, то на первой минуте было бы дописано число  1² + 2² + 2²). Докажите, что сотое дописанное число имеет хотя бы 100 различных простых делителей.

ВверхВниз   Решение


Решите систему уравнений  (n > 2) 

     

    x1x2 = 1.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



Задача 65994

Темы:   [ Иррациональные уравнения ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Решите уравнение  

Прислать комментарий     Решение

Задача 66009

Темы:   [ Иррациональные уравнения ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 3+
Классы: 10,11

Решите уравнение  f(f(x)) = f(x),  если  

Прислать комментарий     Решение

Задача 77908

Темы:   [ Иррациональные уравнения ]
[ Формулы сокращенного умножения (прочее) ]
[ Свойства модуля. Неравенство треугольника ]
[ Уравнения с модулями ]
Сложность: 3+
Классы: 9,10

Решить уравнение:   + = 1.

Прислать комментарий     Решение

Задача 111649

Тема:   [ Иррациональные уравнения ]
Сложность: 3+
Классы: 10,11

Решите систему уравнений  (n > 2) 

     

    x1x2 = 1.

Прислать комментарий     Решение

Задача 61321

Темы:   [ Иррациональные уравнения ]
[ Методы решения задач с параметром ]
Сложность: 3+
Классы: 8,9,10,11

Решите уравнение $ \sqrt{a+\sqrt{a+\sqrt{a+x}}}$ = x.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .