Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 168]
|
|
Сложность: 4+ Классы: 8,9,10
|
Для любых n вещественных чисел a1, a2, ..., an существует такое натуральное k ≤ n, что каждое из k чисел ak, ½ (ak + ak–1),
⅓ (ak + ak–1 + ak–2), ..., 1/k (ak + ak–1 + ... + a2 + a1) не превосходит среднего арифметического c чисел a1, a2, ..., an.
|
|
Сложность: 4+ Классы: 8,9,10
|
Имеется 40 одинаковых газовых баллонов, значения давления газа в которых нам неизвестны и могут быть различны. Разрешается соединять любые баллоны друг с другом в количестве, не превосходящем заданного натурального числа k, а затем разъединять их; при этом давление газа в соединяемых баллонах устанавливается равным среднему арифметическому давлений в них до соединения. При каком наименьшем k существует способ уравнивания давлений во всех 40 баллонах независимо от первоначального распределения давлений в баллонах?
|
|
Сложность: 4+ Классы: 8,9,10
|
На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.
Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?
|
|
Сложность: 4+ Классы: 8,9,10
|
На кольцо свободно нанизано 2009 бусинок. За один ход любую бусинку можно передвинуть так, чтобы она оказалась ровно посередине между двумя соседними. Существуют ли такие изначальная расстановка бусинок и последовательность ходов, при которых какая-то бусинка пройдёт хотя бы один полный круг?
|
|
Сложность: 5- Классы: 8,9,10,11
|
Пусть 2S – суммарный вес некоторого набора гирек.
Назовём натуральное число k средним, если в наборе можно выбрать k гирек, суммарный вес которых равен S. Какое наибольшее количество средних чисел может иметь набор из 100 гирек?
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 168]