Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Внутри квадрата ABCD взята точка M. Докажите, что точки пересечения медиан треугольников  ABM, BCM, CDM и DAM образуют квадрат.

Вниз   Решение


Действительные числа x и y таковы, что для любых различных простых нечётных p и q число  xp + yq   рационально.
Докажите, что x и y – рациональные числа.

ВверхВниз   Решение


С ненулевым числом разрешается проделывать следующие операции: x , x . Верно ли, что из каждого ненулевого рационального числа можно получить каждое рациональное число с помощью конечного числа таких операций?

ВверхВниз   Решение


Ненулевые числа a и b удовлетворяют равенству  a²b²(a²b² + 4) = 2(a6 + b6).  Докажите, что хотя бы одно из них иррационально.

ВверхВниз   Решение


Числовое множество M, содержащее 2003 различных числа, таково, что для каждых двух различных элементов a, b из M число
   рационально. Докажите, что для любого a из M число    рационально.

ВверхВниз   Решение


В числе  a = 0,12457...  n-я цифра после запятой равна цифре слева от запятой в числе    Докажите, что α – иррациональное число.

ВверхВниз   Решение


Во всех рациональных точках действительной прямой расставлены целые числа.
Докажите, что найдётся такой отрезок, что сумма чисел на его концах не превосходит удвоенного числа в его середине.

ВверхВниз   Решение


Числовое множество M , содержащее 2003 различных положительных числа, таково, что для любых трех различных элементов a,b,c из M число a2+bc рационально. Докажите, что можно выбрать такое натуральное n , что для любого a из M число a рационально.

ВверхВниз   Решение


Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение – рациональное число.
Докажите, что квадраты всех чисел рациональны.

ВверхВниз   Решение


В бесконечной последовательности  a1, a2, a3, ... число a1 равно 1, а каждое следующее число an строится из предыдущего an–1 по правилу: если у числа n наибольший нечётный делитель имеет остаток 1 от деления на 4, то  an = an–1 + 1,  если же остаток равен 3, то  an = an–1 – 1.  Докажите, что в этой последовательности
  а) число 1 встречается бесконечно много раз;
  б) каждое натуральное число встречается бесконечно много раз.
(Вот первые члены этой последовательности: 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, ...)

ВверхВниз   Решение


Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины.


ВверхВниз   Решение


Во сколько раз увеличится площадь поверхности шара, если радиус шара увеличить в 2 раза?


ВверхВниз   Решение


Объем куба равен 8. Найдите площадь его поверхности.


ВверхВниз   Решение


Объем параллелепипеда ABCDA1B1C1D1  равен 9. Найдите объем треугольной пирамиды ABCA1 .


ВверхВниз   Решение


Около шара описан цилиндр, площадь поверхности которого равна 18. Найдите площадь поверхности шара.


ВверхВниз   Решение


Прямоугольный параллелепипед описан около сферы радиуса 1 . Найдите его объем.


ВверхВниз   Решение


 Радиус основания цилиндра равен 2, высота равна 3. Найдите площадь боковой поверхности цилиндра, деленную на π .


Вверх   Решение

Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 374]      



Задача 115079

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4. Площадь поверхности этого параллелепипеда равна 94. Найдите третье ребро, выходящее из той же вершины.


Прислать комментарий     Решение

Задача 115082

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Площадь поверхности куба равна 18. Найдите его диагональ.


Прислать комментарий     Решение

Задача 115084

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Объем куба равен 8. Найдите площадь его поверхности.


Прислать комментарий     Решение

Задача 115086

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5, а высота — 10.


Прислать комментарий     Решение

Задача 115088

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

 Радиус основания цилиндра равен 2, высота равна 3. Найдите площадь боковой поверхности цилиндра, деленную на π .


Прислать комментарий     Решение

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 374]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .