ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В основании четырёхугольной пирамиды SABCD лежит параллелограмм ABCD . Докажите, что для любой точки O внутри пирамиды сумма объёмов тетраэдров OSAB и OSCD равна сумме объёмов тетраэдров OSBC и OSDA . |
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 149]
В основании четырёхугольной пирамиды SABCD лежит параллелограмм ABCD . Докажите, что для любой точки O внутри пирамиды сумма объёмов тетраэдров OSAB и OSCD равна сумме объёмов тетраэдров OSBC и OSDA .
Основанием пирамиды является правильный треугольник со стороной 1. Из трёх углов при вершине пирамиды два – прямые.
В треугольной пирамиде ABCD известно, что DC = 9 , DB = AD , а ребро AC перпендикулярно грани ABD . Сфера радиуса 2 касается грани ABC , ребра DC , а также грани DAB , в точке пересечения её медиан. Найдите объём пирамиды.
На рёбрах BC и DC треугольной пирамиды ABCD взяты соответственно точки N и K , причём CN = 2BN , DK:KC = 3:2 . Известно, что M – точка пересечения медиан треугольника ABD . В каком отношении плоскость, проходящая через точки M , N , K , делит объём пирамиды ABCD ?
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 149]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке