ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC проведены биссектрисы AD , BE и CF , пересекающиеся в точке I . Серединный перпендикуляр к отрезку AD пересекает прямые BE и CF в точках M и N соответственно. Докажите, что точки A , I , M и N лежат на одной окружности.

   Решение

Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 499]      



Задача 115300

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

ABCD – выпуклый четырёхугольник, в котором  AD = BD = AC.  Точки M и N – середины сторон AB и CD соответственно. Отрезок MN пересекает диагонали четырёхугольника в точках X и Y, P – точка пересечения AN и DM. Докажите, что  PX = PY.

Прислать комментарий     Решение

Задача 115359

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Углы между биссектрисами ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Вспомогательная окружность ]
Сложность: 4
Классы: 8,9

В треугольнике ABC проведены биссектрисы AD , BE и CF , пересекающиеся в точке I . Серединный перпендикуляр к отрезку AD пересекает прямые BE и CF в точках M и N соответственно. Докажите, что точки A , I , M и N лежат на одной окружности.
Прислать комментарий     Решение


Задача 115626

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Точка пересечения медиан треугольника ABC , вершина A и середины сторон AB и AC лежат на одной окружности. Найдите медиану, проведённую из вершины A , если BC=a .
Прислать комментарий     Решение


Задача 116315

Темы:   [ Углы между биссектрисами ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В треугольнике ABC известно, что B = 50o , C = 70o . Найдите углы треугольника OHC , где H — точка пересечения высот, O — центр окружности, вписанной в треугольник ABC .
Прислать комментарий     Решение


Задача 52857

Темы:   [ Касающиеся окружности ]
[ Вспомогательная окружность ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4+
Классы: 8,9

Окружности S1 и S2 пересекаются в точках A и B. Секущая, проходящая через точку A, пересекает эти окружности вторично в точках M и N. Касательные к окружностям S1 и S2 в точке A пересекаются прямыми BN и BM в точках P и Q соответственно. Докажите, что прямые PQ и MN параллельны.

Прислать комментарий     Решение


Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .