ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На краю круглого вращающегося стола через равные промежутки стояли 30 чашек с чаем. Мартовский Заяц и Соня сели за стол и стали пить чай из каких-то двух чашек (не обязательно соседних). Когда они допили чай, Заяц повернул стол так, что перед каждым опять оказалось по полной чашке. Когда и эти чашки опустели, Заяц снова повернул стол (возможно на другой угол), и снова перед каждым оказалась полная чашка. И так продолжалось до тех пор, пока весь чай не был выпит. Докажите, что если бы Заяц всегда поворачивал стол так, чтобы его новая чашка стояла через одну от предыдущей, то им бы тоже удалось выпить весь чай (то сеть тоже каждый раз обе чашки оказывались бы полными).

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 1221]      



Задача 110020

Темы:   [ Разбиения на пары и группы; биекции ]
[ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Докажите, что числа от 1 до 15 нельзя разбить на две группы: A из двух чисел и B из 13 чисел так, чтобы сумма чисел в группе B была равна произведению чисел в группе A.

Прислать комментарий     Решение

Задача 110056

Темы:   [ Итерации ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 3+
Классы: 9,10,11

Приведённый квадратный трёхчлен  f(x) имеет два различных корня. Может ли так оказаться, что уравнение  f(f(x)) = 0  имеет три различных корня, а уравнение  f(f(f(x))) = 0  – семь различных корней?

Прислать комментарий     Решение

Задача 111638

Темы:   [ Обратный ход ]
[ Арифметика. Устный счет и т.п. ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 6,7,8,9

Мальвина дала Буратино задание: "Сосчитай кляксы в своей тетрадке, прибавь к их числу 7, раздели на 8, умножь на 6 и отними 9. Если сделаешь всё правильно, получишь простое число". Буратино всё перепутал. Кляксы он подсчитал точно, но потом умножил их количество на 7, вычел из результата 8, затем разделил на 6 и прибавил 9. Какой ответ получился у Буратино?

Прислать комментарий     Решение

Задача 111807

Тема:   [ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9,10

По кругу расставлены красные и синие числа. Каждое красное число равно сумме соседних чисел, а каждое синее– полусумме соседних чисел. Докажите, что сумма красных чисел равна нулю.
Прислать комментарий     Решение


Задача 115378

Темы:   [ Процессы и операции ]
[ Четность и нечетность ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 6,7,8

На краю круглого вращающегося стола через равные промежутки стояли 30 чашек с чаем. Мартовский Заяц и Соня сели за стол и стали пить чай из каких-то двух чашек (не обязательно соседних). Когда они допили чай, Заяц повернул стол так, что перед каждым опять оказалось по полной чашке. Когда и эти чашки опустели, Заяц снова повернул стол (возможно на другой угол), и снова перед каждым оказалась полная чашка. И так продолжалось до тех пор, пока весь чай не был выпит. Докажите, что если бы Заяц всегда поворачивал стол так, чтобы его новая чашка стояла через одну от предыдущей, то им бы тоже удалось выпить весь чай (то сеть тоже каждый раз обе чашки оказывались бы полными).

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .