ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Имеется три кучки камней: в первой – 10, во второй – 15, в третьей – 20. За ход разрешается разбить любую кучку на две меньшие. Проигрывает тот, кто не сможет сделать ход. Кто выиграет?

Вниз   Решение


Решите систему:   .

ВверхВниз   Решение


Имеется куб размером 10×10×10, состоящий из маленьких единичных кубиков. В центре O одного из угловых кубиков сидит кузнечик. Он может прыгать в центр кубика, имеющего общую грань с тем, в котором кузнечик находится в данный момент; причём так, чтобы расстояние до точки O увеличивалось. Сколькими способами кузнечик может допрыгать до кубика, противоположного исходному?

ВверхВниз   Решение


На столе в ряд стоят $23$ шкатулки, в одной из которых находится приз. На каждой шкатулке написано либо «Здесь приза нет», либо «Приз в соседней шкатулке». Известно, что ровно одно из этих утверждений правдиво. Что написано на средней шкатулке?

ВверхВниз   Решение


Диаметр AB и хорда CD окружности пересекаются в точке E, причём  CE = DE.  Касательные к окружности в точках B и C пересекаются в точке K. Отрезки AK и CE пересекаются в точке M. Найдите площадь треугольника CKM, если  AB = 10,  AE = 1.

ВверхВниз   Решение


Сколько существует шестизначных чисел, у которых каждая последующая цифра меньше предыдущей?

ВверхВниз   Решение


Дан выпуклый четырехугольник ABCD. Докажите, что если равны периметры треугольников ABC, BCD, CDA, DAB, то ABCD - прямоугольник.

ВверхВниз   Решение


С помощью циркуля и линейки постройте точку, равноудаленную от трёх данных точек.

ВверхВниз   Решение


  В королевстве N городов, некоторые пары которых соединены непересекающимися дорогами с двусторонним движением (города из такой пары называются соседними). При этом известно, что из каждого города можно доехать до любого другого, но невозможно, выехав из некоторого города и двигаясь по различным дорогам, вернуться в исходный город.
  Однажды Король провел такую реформу: каждый из N мэров городов стал снова мэром одного из N городов, но, возможно, не того города, в котором он работал до реформы. Оказалось, что каждые два мэра, работавшие в соседних городах до реформы, оказались в соседних городах и после реформы. Докажите, что либо найдётся город, в котором мэр после реформы не поменялся, либо найдётся пара соседних городов, обменявшихся мэрами.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 61]      



Задача 78628

Темы:   [ Числовые таблицы и их свойства ]
[ НОД и НОК. Взаимная простота ]
[ Перестановки и подстановки (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 9,10,11

Дана таблица n×n клеток и такие натуральные числа k и  m > k,  что m и  n – k  взаимно просты. Таблица заполняется следующим образом: пусть в некоторой строчке записаны числа  a1, ..., ak, ak+1, ..., am, am+1, ..., an.  Тогда в следующей строчке записываются те же числа, но в таком порядке:  am+1, ..., an, ak+1, ..., am, a1, ..., ak.  В первую строчку записываются (по порядку) числа  1, 2, ..., n.  Доказать, что после заполнения таблицы в каждом столбце будут написаны все числа от 1 до n.

Прислать комментарий     Решение

Задача 78548

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Перестановки и подстановки (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 5-
Классы: 9,10,11

При дворе короля Артура собрались 2n рыцарей, причём каждый из них имеет среди присутствующих не более  n – 1  врага.
Доказать, что Мерлин, советник Артура, может так рассадить рыцарей за круглым столом, что ни один из них не будет сидеть рядом со своим врагом.

Прислать комментарий     Решение

Задача 115409

Темы:   [ Обход графов ]
[ Индукция (прочее) ]
[ Перестановки и подстановки (прочее) ]
Сложность: 5-
Классы: 9,10,11

  В королевстве N городов, некоторые пары которых соединены непересекающимися дорогами с двусторонним движением (города из такой пары называются соседними). При этом известно, что из каждого города можно доехать до любого другого, но невозможно, выехав из некоторого города и двигаясь по различным дорогам, вернуться в исходный город.
  Однажды Король провел такую реформу: каждый из N мэров городов стал снова мэром одного из N городов, но, возможно, не того города, в котором он работал до реформы. Оказалось, что каждые два мэра, работавшие в соседних городах до реформы, оказались в соседних городах и после реформы. Докажите, что либо найдётся город, в котором мэр после реформы не поменялся, либо найдётся пара соседних городов, обменявшихся мэрами.

Прислать комментарий     Решение

Задача 35628

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Сочетания и размещения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 9,10

Сколькими способами можно составить расписание первого тура чемпионата России по футболу, в котором играет 16 команд? (Является важным, кто хозяин поля.)

Прислать комментарий     Решение

Задача 35779

Темы:   [ Отношение порядка ]
[ Парадоксы ]
[ Примеры и контрпримеры. Конструкции ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3
Классы: 8,9

Три бегуна А, Б, В несколько раз совершили забег на 100 метров. При подведении результатов оказалось, что А обогнал Б больше, чем в половине забегов, Б обогнал В больше, чем в половине забегов, а В обогнал А больше, чем в половине забегов. Могло ли это случиться?

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 61]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .