ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

КУБ является кубом. Докажите, что ШАР кубом не является. (КУБ и ШАР  трёхзначные числа, разные буквы обозначают различные цифры.)

   Решение

Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 1221]      



Задача 111252

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 7,8,9

В таблицу 4×4 записали натуральные числа. Могло ли оказаться так, что сумма чисел в каждой следующей строке на 2 больше, чем в предыдущей, а сумма чисел в каждом следующем столбце на 3 больше, чем в предыдущем?

Прислать комментарий     Решение

Задача 115492

Темы:   [ Ребусы ]
[ Перебор случаев ]
Сложность: 2+
Классы: 6,7,8

КУБ является кубом. Докажите, что ШАР кубом не является. (КУБ и ШАР  трёхзначные числа, разные буквы обозначают различные цифры.)
Прислать комментарий     Решение


Задача 102972

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Подсчет двумя способами ]
Сложность: 2+
Классы: 5,6

Очень хитрый киоскер получил для продажи несколько пачек конвертов по 100 конвертов в каждой. 10 конвертов он отсчитывает за 10 с. За сколько секунд он может отсчитать 60 конвертов? А 90?
Прислать комментарий     Решение


Задача 61320

Темы:   [ Монотонность, ограниченность ]
[ Итерации ]
Сложность: 2+
Классы: 8,9,10

Докажите, что для монотонно возрастающей функции f (x) уравнения x = f (f (x)) и x = f (x) равносильны.

Прислать комментарий     Решение

Задача 78169

Темы:   [ Двоичная система счисления ]
[ Процессы и операции ]
Сложность: 2+
Классы: 8,9

Пусть a и b — целые числа. Напишем число b справа от числа a. Если число a чётное, то разделим его на 2, если оно нечётное, то сначала вычтем из него единицу, а потом разделим его на 2. Получившееся число a1 напишем под числом a. Справа от числа a1 напишем число 2b. С числом a1 проделаем ту же операцию, что и с числом a, и, получив число a2, напишем его под числом a1. Справа от числа a2 напишем число 4b и так далее. Этот процесс продолжаем до тех пор, пока не получим в левом столбце число 1. Доказать, что сумма тех чисел правого столбца, слева от которых стоят нечётные числа, равна произведению ab.
Прислать комментарий     Решение


Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .