|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Барон Мюнхаузен утверждает, что пустил шар от борта бильярда, имеющего форму правильного треугольника, так, что тот, отражаясь от бортов, прошёл через некоторую точку три раза в трёх различных направлениях и вернулся в исходную точку. Могут ли слова барона быть правдой? (Отражение шара от борта происходит по закону "угол падения равен углу отражения".)
В треугольнике ABC угол при вершине B равен
Трое сумасшедших маляров принялись красить пол каждый в свой цвет. Один успел закрасить красным 75% пола, другой зелёным – 70%, третий синим – 65%. Какая часть пола заведомо закрашена всеми тремя красками? Стороны треугольника ABC видны из точки T под углами 120°. Противоположные стороны выпуклого шестиугольника попарно равны и параллельны. Докажите, что он имеет центр симметрии. Та же задача, если требуется, чтобы число операций было пропорционально log n. (Переменные должны быть целочисленными.) Найдите наибольшее значение функции y = 14x-7tgx-3,5π +11 на отрезке [- Точка H – основание высоты треугольника со сторонами 10, 12, 14, опущенной на сторону, равную 12. Через точку H, проведена прямая, отсекающая от треугольника подобный ему треугольник и пересекающая сторону, равную 10, в точке M. Найдите HM. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 93]
На прямой l даны точки A, B, C и D. Через точки A и
B, а также через точки C и D проводятся параллельные прямые.
Три прямые, параллельные сторонам данного треугольника, отсекают от него три треугольника, причём остается равносторонний шестиугольник.
Три прямые, параллельные сторонам треугольника, пересекаются в одной точке, причем стороны треугольника высекают на этих прямых отрезки длиной x. Найдите x, если длины сторон треугольника равны a, b и c.
В треугольнике ABC AB = 18, BC = 16, cos∠B = 4/9, AH – высота. Через точку H, проведена прямая, отсекающая от треугольника подобный ему треугольник и пересекающая сторону AB в точке M. Найдите HM.
Точка H – основание высоты треугольника со сторонами 10, 12, 14, опущенной на сторону, равную 12. Через точку H, проведена прямая, отсекающая от треугольника подобный ему треугольник и пересекающая сторону, равную 10, в точке M. Найдите HM.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 93] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|