ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть AHa и BHb – высоты треугольника ABC, P и Q – проекции точки Ha на стороны AB и AC. Докажите, что прямая PQ делит отрезок HaHb пополам.

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 563]      



Задача 108748

Темы:   [ Построение треугольников по различным элементам ]
[ Симметрия помогает решить задачу ]
[ Биссектриса угла (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 7,8,9

Дан отрезок AB и прямая MN, пересекающая его. Построить треугольник ABC так, чтобы прямая MN делила его угол пополам.

Прислать комментарий     Решение

Задача 111803

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Свойства симметрий и осей симметрии ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Ортоцентр и ортотреугольник ]
Сложность: 3+
Классы: 8,9,10

На сторонах AB и AC треугольника ABC нашлись такие точки M и N, отличные от вершин, что  MC = AC  и  NB = AB.  Точка P симметрична точке A относительно прямой BC. Докажите, что PA является биссектрисой угла MPN.

Прислать комментарий     Решение

Задача 115308

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Симметрия помогает решить задачу ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AA1 и BB1. Биссектриса угла ACB пересекает эти высоты в точках L и K соответственно.
Докажите, что середина отрезка KL равноудалена от точек A1 и B1.

Прислать комментарий     Решение

Задача 115891

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Симметрия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9,10,11

Пусть AHa и BHb – высоты треугольника ABC, P и Q – проекции точки Ha на стороны AB и AC. Докажите, что прямая PQ делит отрезок HaHb пополам.

Прислать комментарий     Решение

Задача 116545

Темы:   [ Процессы и операции ]
[ Свойства симметрий и осей симметрии ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Автор: Шмаров В.

Вначале на плоскости были отмечены три различные точки. Каждую минуту выбирались некоторые три из отмеченных точек – обозначим их A, B и C, после чего на плоскости отмечалась точка D, симметричная A относительно серединного перпендикуляра к BC. Через сутки оказалось, что среди отмеченных точек нашлись три различные точки, лежащие на одной прямой. Докажите, что три исходных точки также лежали на одной прямой.

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .