ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Основанием прямой призмы служит ромб с острым углом α . Найдите объём призмы, если её большая диагональ равна l и образует с плоскостью основания угол β . Правильный пятиугольник и правильный двадцатиугольник вписаны в одну и ту же окружность. F(x) – возрастающая функция, определённая на отрезке [0, 1]. Известно, что область её значений принадлежит отрезку [0, 1]. Доказать, что, каково бы ни было натуральное n, график функции можно покрыть N прямоугольниками, стороны которых параллельны осям координат так, что площадь каждого равна 1/n². (В прямоугольник мы включаем его внутренние точки и точки его границы.) Человек имеет 10 друзей и в течение нескольких дней приглашает некоторых из них в гости так, что компания ни разу не повторяется (в какой-то из дней он может не приглашать никого). Сколько дней он может так делать? Докажите, что нечётное число, являющееся произведением n различных простых сомножителей, можно представить в виде разности квадратов двух натуральных чисел ровно 2n–1 различными способами. Дан ромб ABCD с тупым углом при вершине A. На продолжении стороны
AD за точку D взята точка K. Отрезки BK и CD пересекаются в точке L. Точка D лежит на основании BC равнобедренного треугольника ABC, а точки M и K – на его боковых сторонах AB и AC соответственно, причём AMDK – параллелограмм. Прямые MK и BC пересекаются в точке L. Перпендикуляр к BC, восставленный из точки D, пересекает прямые AB и AC в точках X и Y соответственно. Докажите, что окружность с центром L, проходящая через D, касается описанной окружности треугольника AXY. В трапеции ABCD биссектриса тупого угла B пересекает основание AD в точке K – его середине, M – середина BC, AB = BC. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 688]
В трапеции ABCD биссектриса тупого угла B пересекает основание AD в точке K – его середине, M – середина BC, AB = BC.
В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке O. Известно, что площади треугольников AOB и COD равны.
Площадь равнобедренной трапеции равна 32. Котангенс угла между диагональю и основанием равен 2. Найдите высоту трапеции.
Боковые стороны трапеции равны 7 и 11, а основания — 5 и 15. Прямая, проведённая через вершину меньшего основания параллельно большей боковой стороне, отсекает от трапеции треугольник. Найдите его стороны.
Найти все равнобочные трапеции, которые разбиваются диагональю на два равнобедренных треугольника.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 688]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке