ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Биссектриса угла B и биссектриса внешнего угла D прямоугольника ABCD пересекают сторону AD и прямую AB в точках M и K соответственно.
Докажите, что отрезок MK равен и перпендикулярен диагонали прямоугольника.

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 144]      



Задача 116154

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
[ Ортоцентр и ортотреугольник ]
[ Поворот помогает решить задачу ]
Сложность: 2
Классы: 8,9

Биссектриса угла B и биссектриса внешнего угла D прямоугольника ABCD пересекают сторону AD и прямую AB в точках M и K соответственно.
Докажите, что отрезок MK равен и перпендикулярен диагонали прямоугольника.

Прислать комментарий     Решение

Задача 64864

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 8,9,10

Дан прямоугольный треугольник ABC. На катете AB во внешнюю сторону построен равносторонний треугольник ADB, а на гипотенузе AC во внутреннюю сторону – равносторонний треугольник AEC. Прямые DE и AB пересекаются в точке M. Весь чертёж стерли, оставив только точки A и B. Восстановите точку M.

Прислать комментарий     Решение

Задача 65641

Темы:   [ Шестиугольники ]
[ Правильный (равносторонний) треугольник ]
[ Примеры и контрпримеры. Конструкции ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 8,9,10

В шестиугольнике равны углы, три главные диагонали равны между собой и шесть остальных диагоналей также равны между собой.
Верно ли, что у него равны стороны?

Прислать комментарий     Решение

Задача 116870

Темы:   [ Правильный (равносторонний) треугольник ]
[ Перегруппировка площадей ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 9,10

На сторонах AB и BC равностороннего треугольника ABC отмечены точки L и K соответственно, M – точка пересечения отрезков AK и CL. Известно, что площадь треугольника AMC равна площади четырёхугольника LBKM. Найдите угол AMC.

Прислать комментарий     Решение

Задача 53142

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На сторонах прямоугольного треугольника, вне его, построены квадраты. Известно, что шесть вершин квадратов, не принадлежащих треугольнику, лежат на окружности радиуса 1. Найдите стороны треугольника.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 144]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .